* fix(os_symphony) * Update desktop_env_os_symphony.py * fix(os_symphony_desktop) * fix(os_symphony_start) * Add docstring to run_multienv_os_symphony.py Added documentation header for the evaluation script.
908 lines
32 KiB
Python
908 lines
32 KiB
Python
"""
|
|
OS-Symphony Official Evaluation Script
|
|
|
|
This script serves as the official evaluation entry point for OS-Symphony.
|
|
It handles the setup of the desktop environment, agent initialization, and
|
|
execution of evaluation tasks.
|
|
|
|
For detailed evaluation metrics, configuration options, and usage instructions,
|
|
please refer to the official repository:
|
|
https://github.com/OS-Copilot/OS-Symphony
|
|
"""
|
|
|
|
|
|
import argparse
|
|
import copy
|
|
import datetime
|
|
import json
|
|
import logging
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
import signal
|
|
import time
|
|
from multiprocessing import Process, Manager, current_process, Queue
|
|
|
|
from mm_agents.os_symphony.agents.os_symphony import OSSymphony
|
|
from mm_agents.os_symphony.agents.os_aci import OSACI
|
|
import lib_run_single
|
|
# Modify desktop_env, add a new function 'start'
|
|
from desktop_env.desktop_env_os_symphony import DesktopEnv as OSWorldDesktopEnv
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
|
|
# only for WAA
|
|
def prepare_worker_vm_paths(base_golden_path: str, worker_idx: int):
|
|
# remove the '/' at the end
|
|
base_golden_path = base_golden_path.rstrip(os.sep)
|
|
|
|
# get parent directory (like /nvme/yangbowen/vm_stroage/waa)
|
|
parent_dir = os.path.dirname(base_golden_path)
|
|
|
|
# define the path of this worker
|
|
worker_storage_path = os.path.join(parent_dir, f"storage_{worker_idx}")
|
|
worker_backup_path = os.path.join(parent_dir, f"storage_{worker_idx}_backup")
|
|
|
|
return worker_storage_path, worker_backup_path
|
|
|
|
|
|
# only for WAA
|
|
def initialize_worker_files(golden_path: str, worker_backup_path: str, worker_storage_path: str):
|
|
"""
|
|
Initialize worker. If backup doesn't exist, then replicate from golden path.
|
|
"""
|
|
if not os.path.exists(golden_path):
|
|
raise FileNotFoundError(f"Golden VM path not found: {golden_path}")
|
|
|
|
if not os.path.exists(worker_backup_path):
|
|
logger.info(f"Initializing backup for worker from {golden_path} to {worker_backup_path} ...")
|
|
try:
|
|
os.makedirs(os.path.dirname(worker_backup_path), exist_ok=True)
|
|
|
|
if os.path.isdir(golden_path):
|
|
subprocess.check_call(['cp', '-r', '--sparse=always', golden_path, worker_backup_path])
|
|
else:
|
|
subprocess.check_call(['cp', '--sparse=always', golden_path, worker_backup_path])
|
|
|
|
logger.info(f"Backup initialization complete for {worker_backup_path}")
|
|
except subprocess.CalledProcessError as e:
|
|
logger.error(f"Failed to copy golden image to backup using cp: {e}")
|
|
raise e
|
|
else:
|
|
logger.info(f"Worker backup already exists at {worker_backup_path}, skipping copy.")
|
|
|
|
if not os.path.exists(worker_storage_path):
|
|
os.makedirs(worker_storage_path, exist_ok=True)
|
|
|
|
|
|
logger = logging.getLogger()
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
|
|
formatter = logging.Formatter(
|
|
fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s"
|
|
)
|
|
|
|
# Set up Stdout handler
|
|
stdout_handler = logging.StreamHandler(sys.stdout)
|
|
stdout_handler.setLevel(logging.INFO)
|
|
stdout_handler.setFormatter(formatter)
|
|
stdout_handler.addFilter(logging.Filter("desktopenv"))
|
|
logger.addHandler(stdout_handler)
|
|
|
|
# Set up File Handler
|
|
# file_handler = logging.FileHandler(filename="log.txt")
|
|
# file_handler.setLevel(logging.ERROR)
|
|
# file_handler.setFormatter(formatter)
|
|
# file_handler.addFilter(logging.Filter("desktopenv"))
|
|
# logger.addHandler(file_handler)
|
|
|
|
# Logger Configs
|
|
logger = logging.getLogger("desktopenv.experiment")
|
|
|
|
|
|
# Global variables for signal handling
|
|
active_environments = []
|
|
processes = []
|
|
is_terminating = False
|
|
|
|
|
|
def distribute_tasks(test_all_meta: dict) -> list:
|
|
all_tasks = []
|
|
for domain, examples in test_all_meta.items():
|
|
for example_id in examples:
|
|
all_tasks.append((domain, example_id))
|
|
return all_tasks
|
|
|
|
|
|
def process_signal_handler(signum, frame, env_idx):
|
|
logger.info(f"Process {env_idx + 1} received signal {signum}. Shutting down...")
|
|
local_vars = frame.f_locals
|
|
active_environments = local_vars.get("active_environments", [])
|
|
for env in active_environments:
|
|
if env is not None:
|
|
try:
|
|
logger.info(f"Process {env_idx + 1} closing environment...")
|
|
env.close()
|
|
logger.info(f"Process {env_idx + 1} environment closed successfully")
|
|
except Exception as e:
|
|
logger.error(f"Process {env_idx + 1} error closing environment: {e}")
|
|
logger.info(f"Process {env_idx + 1} shutdown complete. Exiting.")
|
|
sys.exit(0)
|
|
|
|
|
|
def run_env_tasks(
|
|
task_queue: Queue,
|
|
args: argparse.Namespace,
|
|
shared_scores: list,
|
|
engine_params_for_orchestrator,
|
|
engine_params_for_grounder,
|
|
engine_params_for_coder,
|
|
engine_params_for_memoryer,
|
|
engine_params_for_searcher,
|
|
worker_id: int,
|
|
):
|
|
active_environments = []
|
|
env = None
|
|
search_env = None
|
|
try:
|
|
# Use IMAGE_ID_MAP for AWS provider to get snapshot_name
|
|
snapshot_name = None
|
|
region = getattr(args, "region", "us-east-1")
|
|
platform = 'linux'
|
|
screen_size = (args.screen_width, args.screen_height)
|
|
|
|
if "osworld" in args.benchmark:
|
|
if args.provider_name == "aws":
|
|
from desktop_env.providers.aws.manager import IMAGE_ID_MAP
|
|
ami_id = IMAGE_ID_MAP[region].get(screen_size, IMAGE_ID_MAP[region][(1920, 1080)])
|
|
env = OSWorldDesktopEnv(
|
|
path_to_vm=args.path_to_vm,
|
|
action_space=args.action_space,
|
|
provider_name=args.provider_name,
|
|
region=region,
|
|
snapshot_name=ami_id,
|
|
screen_size=screen_size,
|
|
headless=args.headless,
|
|
os_type="Ubuntu",
|
|
require_a11y_tree=args.observation_type in ["a11y_tree", "screenshot_a11y_tree", "som"]
|
|
)
|
|
elif args.provider_name == "docker":
|
|
env = OSWorldDesktopEnv(
|
|
path_to_vm=args.path_to_vm,
|
|
action_space=args.action_space,
|
|
provider_name=args.provider_name,
|
|
region=region,
|
|
snapshot_name=snapshot_name,
|
|
screen_size=screen_size,
|
|
headless=args.headless,
|
|
os_type="Ubuntu",
|
|
require_a11y_tree=args.observation_type
|
|
in ["a11y_tree", "screenshot_a11y_tree", "som"],
|
|
enable_proxy=True,
|
|
client_password=getattr(args, "client_password", "")
|
|
)
|
|
else:
|
|
raise Exception("Don't support other providers!")
|
|
|
|
env.start()
|
|
|
|
if args.provider_name == "aws":
|
|
from desktop_env.providers.aws.manager import IMAGE_ID_MAP
|
|
ami_id = IMAGE_ID_MAP[region].get(screen_size, IMAGE_ID_MAP[region][(1920, 1080)])
|
|
search_env = OSWorldDesktopEnv(
|
|
path_to_vm=args.path_to_vm,
|
|
action_space=args.action_space,
|
|
provider_name=args.provider_name,
|
|
region=region,
|
|
snapshot_name=ami_id,
|
|
screen_size=screen_size,
|
|
headless=args.headless,
|
|
os_type="Ubuntu",
|
|
require_a11y_tree=args.observation_type in ["a11y_tree", "screenshot_a11y_tree", "som"]
|
|
)
|
|
elif args.provider_name == "docker":
|
|
search_env = OSWorldDesktopEnv(
|
|
path_to_vm=args.path_to_vm,
|
|
action_space=args.action_space,
|
|
provider_name=args.provider_name,
|
|
region=region,
|
|
snapshot_name=snapshot_name,
|
|
screen_size=screen_size,
|
|
headless=args.headless,
|
|
os_type="Ubuntu",
|
|
require_a11y_tree=args.observation_type
|
|
in ["a11y_tree", "screenshot_a11y_tree", "som"],
|
|
enable_proxy=True,
|
|
client_password=getattr(args, "client_password", "")
|
|
)
|
|
else:
|
|
raise Exception("Don't support other providers!")
|
|
|
|
engine_params_for_ocr = copy.deepcopy(engine_params_for_orchestrator)
|
|
engine_params_for_ocr["agent_name"] = "ocr"
|
|
os_aci = OSACI(
|
|
env=env,
|
|
search_env=search_env,
|
|
platform=platform,
|
|
client_password=args.client_password,
|
|
engine_params_for_ocr=engine_params_for_ocr,
|
|
engine_params_for_grounder=engine_params_for_grounder,
|
|
engine_params_for_coder=engine_params_for_coder,
|
|
engine_params_for_searcher=engine_params_for_searcher,
|
|
screen_width=args.screen_width,
|
|
screen_height=args.screen_height,
|
|
)
|
|
agent = OSSymphony(
|
|
engine_params_for_orchestrator,
|
|
engine_params_for_memoryer,
|
|
os_aci,
|
|
platform=platform,
|
|
client_password=args.client_password,
|
|
max_trajectory_length=args.max_trajectory_length,
|
|
enable_reflection=args.enable_reflection,
|
|
)
|
|
|
|
active_environments.append(env)
|
|
active_environments.append(search_env)
|
|
logger.info(f"Process {current_process().name} started.")
|
|
while True:
|
|
try:
|
|
item = task_queue.get(timeout=5)
|
|
except Exception:
|
|
break
|
|
domain, example_id = item
|
|
try:
|
|
config_file = os.path.join(
|
|
args.test_config_base_dir, f"examples/{domain}/{example_id}.json"
|
|
)
|
|
with open(config_file, "r", encoding="utf-8") as f:
|
|
example = json.load(f)
|
|
|
|
if args.enable_rewrite_instruction and "rewritten_instruction" in example:
|
|
instruction = example["rewritten_instruction"]
|
|
else:
|
|
instruction = example["instruction"]
|
|
|
|
example_result_dir = os.path.join(
|
|
args.result_dir,
|
|
domain,
|
|
example_id
|
|
)
|
|
os.makedirs(example_result_dir, exist_ok=True)
|
|
logger.info(f"[{current_process().name}][Domain]: {domain}")
|
|
logger.info(f"[{current_process().name}][Example ID]: {example_id}")
|
|
logger.info(f"[{current_process().name}][Instruction]: {instruction}")
|
|
try:
|
|
lib_run_single.run_single_example_os_symphony(
|
|
agent,
|
|
env,
|
|
example,
|
|
args.max_steps,
|
|
instruction,
|
|
args,
|
|
example_result_dir,
|
|
shared_scores,
|
|
)
|
|
except Exception as e:
|
|
import traceback
|
|
|
|
logger.error(
|
|
f"Exception in {current_process().name} {domain}/{example_id}: {e}"
|
|
)
|
|
logger.error(traceback.format_exc())
|
|
|
|
with open(os.path.join(os.path.dirname(example_result_dir), "error.jsonl"), "a") as f:
|
|
f.write(json.dumps({"Error": f"{domain}/{example_id} - {e}"}))
|
|
f.write("\n")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Task-level error in {current_process().name}: {e}")
|
|
import traceback
|
|
|
|
logger.error(traceback.format_exc())
|
|
except Exception as e:
|
|
logger.error(f"Process-level error in {current_process().name}: {e}")
|
|
import traceback
|
|
|
|
logger.error(traceback.format_exc())
|
|
finally:
|
|
logger.info(f"{current_process().name} cleaning up environment...")
|
|
try:
|
|
if env:
|
|
env.close()
|
|
logger.info(f"{current_process().name} environment closed successfully")
|
|
if search_env:
|
|
search_env.close()
|
|
logger.info(f"{current_process().name} searcher environment closed successfully")
|
|
except Exception as e:
|
|
logger.error(
|
|
f"{current_process().name} error during environment cleanup: {e}"
|
|
)
|
|
|
|
# exit function
|
|
def signal_handler(signum, frame):
|
|
global is_terminating, active_environments, processes
|
|
if is_terminating:
|
|
return
|
|
is_terminating = True
|
|
logger.info(f"Received signal {signum}. Gracefully shutting down...")
|
|
for env in active_environments:
|
|
try:
|
|
logger.info(f"Closing environment...")
|
|
env.close()
|
|
logger.info(f"Environment closed successfully")
|
|
except Exception as e:
|
|
logger.error(f"Error closing environment: {e}")
|
|
for p in processes:
|
|
if p.is_alive():
|
|
try:
|
|
logger.info(f"Sending termination signal to process {p.name}...")
|
|
p.terminate()
|
|
except Exception as e:
|
|
logger.error(f"Error sending termination signal to process: {e}")
|
|
time.sleep(1)
|
|
for p in processes:
|
|
if p.is_alive():
|
|
try:
|
|
logger.info(f"Forcefully terminating process {p.name}...")
|
|
import signal as sig
|
|
|
|
os.kill(p.pid, sig.SIGKILL)
|
|
except Exception as e:
|
|
logger.error(f"Error forcefully terminating process: {e}")
|
|
logger.info("Shutdown complete. Exiting.")
|
|
sys.exit(0)
|
|
|
|
|
|
def config() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser(
|
|
description="Run end-to-end evaluation on the benchmark"
|
|
)
|
|
|
|
# environment config
|
|
parser.add_argument("--path_to_vm", type=str, default=None)
|
|
parser.add_argument(
|
|
"--provider_name",
|
|
type=str,
|
|
default="vmware",
|
|
help="Virtualization provider (vmware, docker, aws, azure, gcp, virtualbox)",
|
|
)
|
|
parser.add_argument(
|
|
"--headless", action="store_true", help="Run in headless machine"
|
|
)
|
|
parser.add_argument(
|
|
"--action_space", type=str, default="pyautogui", help="Action type"
|
|
)
|
|
parser.add_argument(
|
|
"--observation_type",
|
|
choices=["screenshot", "a11y_tree", "screenshot_a11y_tree", "som"],
|
|
default="screenshot",
|
|
help="Observation type",
|
|
)
|
|
parser.add_argument(
|
|
"--num_envs",
|
|
type=int,
|
|
default=1,
|
|
help="Number of environments to run in parallel",
|
|
)
|
|
parser.add_argument("--screen_width", type=int, default=1920, help="Main environment's width")
|
|
parser.add_argument("--screen_height", type=int, default=1080, help="Main environment's height")
|
|
parser.add_argument("--sleep_after_execution", type=float, default=1.0)
|
|
parser.add_argument("--max_steps", type=int, default=15)
|
|
|
|
# Benchmark
|
|
parser.add_argument("--benchmark", type=str, default="osworld", help="osworld / waa / macos")
|
|
|
|
parser.add_argument("--domain", type=str, default="all")
|
|
parser.add_argument(
|
|
"--test_all_meta_path", type=str, default="evaluation_examples/osworld/test_all.json"
|
|
)
|
|
parser.add_argument(
|
|
"--test_config_base_dir", type=str, default="evaluation_examples"
|
|
)
|
|
parser.add_argument("--result_dir", type=str, default="./results")
|
|
|
|
parser.add_argument(
|
|
"--region", type=str, default="us-east-1", help="AWS region for the VM for OSWorld."
|
|
)
|
|
parser.add_argument(
|
|
"--client_password", type=str, default="password", help="Client password for OSWorld. Aws is 'osworld-public-evaluation', other is 'password'"
|
|
)
|
|
parser.add_argument(
|
|
"--proxy", type=str, default="http://10.1.8.5:23128", help="Important! Proxy setting, format should be http://<ip>:<port>, if no-use, set it empty"
|
|
)
|
|
|
|
# agent config
|
|
parser.add_argument("--max_trajectory_length", type=int, default=8)
|
|
parser.add_argument("--enable_reflection", action="store_true", default=False)
|
|
parser.add_argument("--enable_rewrite_instruction", action="store_true", default=False)
|
|
parser.add_argument(
|
|
"--tool_config",
|
|
type=str,
|
|
help="The path of tool config yaml"
|
|
)
|
|
|
|
# generator-agent config
|
|
parser.add_argument("--orchestrator_provider", type=str, default="openai")
|
|
parser.add_argument("--orchestrator_model", type=str, default="gpt-5")
|
|
parser.add_argument(
|
|
"--orchestrator_url",
|
|
type=str,
|
|
default="",
|
|
help="The URL of the main orchestrator model API.",
|
|
)
|
|
parser.add_argument(
|
|
"--orchestrator_api_key",
|
|
type=str,
|
|
default="",
|
|
help="The API key of the main orchestrator model.",
|
|
)
|
|
parser.add_argument(
|
|
"--orchestrator_temperature",
|
|
type=float,
|
|
default=None,
|
|
help="Temperature to fix the orchestrator model at (e.g. o3 can only be run with 1.0)",
|
|
)
|
|
parser.add_argument("--orchestrator_keep_first_image", action="store_true", default=False, help="Whether keep the first image(first state) in the orchestrator agent")
|
|
|
|
# code-agent config
|
|
parser.add_argument("--coder_provider", type=str, default="openai")
|
|
parser.add_argument("--coder_model", type=str, default="gpt-4o")
|
|
parser.add_argument(
|
|
"--coder_url",
|
|
type=str,
|
|
default="",
|
|
help="The URL of the coder model API.",
|
|
)
|
|
parser.add_argument(
|
|
"--coder_api_key",
|
|
type=str,
|
|
default="",
|
|
help="The API key of the coder model.",
|
|
)
|
|
parser.add_argument(
|
|
"--coder_temperature",
|
|
type=float,
|
|
default=None,
|
|
help="Temperature to fix the coder model at (e.g. o3 can only be run with 1.0)",
|
|
)
|
|
parser.add_argument(
|
|
"--coder_budget",
|
|
type=int,
|
|
default=20,
|
|
help="Max inner loop steps of coder agent",
|
|
)
|
|
|
|
# reflection-memory agent config
|
|
parser.add_argument("--memoryer_provider", type=str, default="openai")
|
|
parser.add_argument("--memoryer_model", type=str, default="gpt-4o")
|
|
parser.add_argument(
|
|
"--memoryer_url",
|
|
type=str,
|
|
default="",
|
|
help="The URL of the memoryer model API.",
|
|
)
|
|
parser.add_argument(
|
|
"--memoryer_api_key",
|
|
type=str,
|
|
default="",
|
|
help="The API key of the memoryer model.",
|
|
)
|
|
parser.add_argument(
|
|
"--memoryer_temperature",
|
|
type=float,
|
|
default=None,
|
|
help="Temperature to fix the memoryer model at (e.g. o3 can only be run with 1.0)",
|
|
)
|
|
parser.add_argument(
|
|
"--memoryer_max_images",
|
|
type=int,
|
|
default=9,
|
|
help="Max images of memoryer model"
|
|
)
|
|
|
|
# search model config
|
|
parser.add_argument("--searcher_provider", type=str, default="openai")
|
|
parser.add_argument("--searcher_model", type=str, default="gpt-4o")
|
|
parser.add_argument(
|
|
"--searcher_url",
|
|
type=str,
|
|
default="",
|
|
help="The URL of the searcher model API.",
|
|
)
|
|
parser.add_argument(
|
|
"--searcher_api_key",
|
|
type=str,
|
|
default="",
|
|
help="The API key of the searcher model.",
|
|
)
|
|
parser.add_argument(
|
|
"--searcher_temperature",
|
|
type=float,
|
|
default=None,
|
|
help="Temperature to fix searcher model at (e.g. o3 can only be run with 1.0)",
|
|
)
|
|
parser.add_argument(
|
|
"--searcher_type",
|
|
type=str,
|
|
default="vlm",
|
|
help="Type of search agent, vlm/llm(all in search action), default is vlm",
|
|
)
|
|
parser.add_argument(
|
|
"--searcher_engine",
|
|
type=str,
|
|
default="google",
|
|
help="Type of search engine, google / duckduckgo",
|
|
)
|
|
parser.add_argument(
|
|
"--searcher_budget",
|
|
type=int,
|
|
default=20,
|
|
help="Max inner loop steps of search agent",
|
|
)
|
|
parser.add_argument(
|
|
"--searcher_screen_width",
|
|
type=int,
|
|
default=1920,
|
|
help="Search enviroment's width",
|
|
)
|
|
parser.add_argument(
|
|
"--searcher_screen_height",
|
|
type=int,
|
|
default=1080,
|
|
help="Search enviroment's height",
|
|
)
|
|
parser.add_argument(
|
|
"--searcher_path_to_vm",
|
|
type=str,
|
|
default="/nvme/yangbowen/vm_stroage/osworld/Ubuntu.qcow2",
|
|
help="Searcher Env VM's path (OSWorld'VM Path)",
|
|
)
|
|
|
|
# grounding model config, temperature is 0 with hardcode
|
|
parser.add_argument(
|
|
"--grounder_provider",
|
|
type=str,
|
|
required=True,
|
|
help="The provider for the grounder model",
|
|
)
|
|
parser.add_argument(
|
|
"--grounder_url", type=str, required=True, help="The URL of the grounder model"
|
|
)
|
|
parser.add_argument(
|
|
"--grounder_api_key",
|
|
type=str,
|
|
default="",
|
|
help="The API key of the grounder model.",
|
|
)
|
|
parser.add_argument(
|
|
"--grounder_model",
|
|
type=str,
|
|
required=True,
|
|
help="The model name for the grounder model",
|
|
)
|
|
parser.add_argument(
|
|
"--grounding_width",
|
|
type=int,
|
|
required=True,
|
|
help="Width of screenshot image after processor rescaling",
|
|
)
|
|
parser.add_argument(
|
|
"--grounding_height",
|
|
type=int,
|
|
required=True,
|
|
help="Height of screenshot image after processor rescaling",
|
|
)
|
|
parser.add_argument(
|
|
"--grounding_smart_resize",
|
|
action="store_true", default=False,
|
|
help="UI-TARS-1.5 and ScaleCUA needs smart resize, if this set, grounding_width and grounding_height is no use.",
|
|
)
|
|
parser.add_argument(
|
|
"--grounder_zoom_in_time",
|
|
type=int,
|
|
default=1,
|
|
help="Zoom-in times for grounder agent, aiming to enhance grounding ability.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--exp_name",
|
|
type=str,
|
|
default="",
|
|
help="Experiment Name",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def test(args: argparse.Namespace, test_all_meta: dict) -> None:
|
|
global processes
|
|
logger.info("Args: %s", args)
|
|
all_tasks = distribute_tasks(test_all_meta)
|
|
logger.info(f"Total tasks: {len(all_tasks)}")
|
|
|
|
engine_params_for_orchestrator = {
|
|
"engine_type": args.orchestrator_provider,
|
|
"model": args.orchestrator_model,
|
|
"base_url": getattr(args, "orchestrator_url", ""),
|
|
"api_key": getattr(args, "orchestrator_api_key", ""),
|
|
"temperature": getattr(args, "orchestrator_temperature", None),
|
|
"tool_config": args.tool_config,
|
|
"keep_first_image": args.orchestrator_keep_first_image,
|
|
"agent_name": "orchestrator"
|
|
}
|
|
|
|
|
|
engine_params_for_grounder = {
|
|
"engine_type": args.grounder_provider,
|
|
"model": args.grounder_model,
|
|
"base_url": getattr(args, "grounder_url", ""),
|
|
"api_key": getattr(args, "grounder_api_key", ""),
|
|
"grounding_width": args.grounding_width,
|
|
"grounding_height": args.grounding_height,
|
|
"grounding_smart_resize": args.grounding_smart_resize,
|
|
"grounder_zoom_in_time": args.grounder_zoom_in_time,
|
|
"agent_name": "grounder"
|
|
}
|
|
|
|
engine_params_for_coder = {
|
|
"engine_type": args.coder_provider,
|
|
"model": args.coder_model,
|
|
"base_url": getattr(args, "coder_url", ""),
|
|
"api_key": getattr(args, "coder_api_key", ""),
|
|
"temperature": getattr(args, "coder_temperature", None),
|
|
"budget": args.coder_budget,
|
|
"agent_name": "coder"
|
|
}
|
|
|
|
engine_params_for_memoryer = {
|
|
"engine_type": args.memoryer_provider,
|
|
"model": args.memoryer_model,
|
|
"base_url": getattr(args, "memoryer_url", ""),
|
|
"api_key": getattr(args, "memoryer_api_key", ""),
|
|
"temperature": getattr(args, "memoryer_temperature", None),
|
|
"max_images": args.memoryer_max_images,
|
|
"agent_name": "memoryer"
|
|
}
|
|
|
|
engine_params_for_searcher = {
|
|
"engine_type": args.searcher_provider,
|
|
"model": args.searcher_model,
|
|
"base_url": getattr(args, "searcher_url", ""),
|
|
"api_key": getattr(args, "searcher_api_key", ""),
|
|
"temperature": getattr(args, "searcher_temperature", None),
|
|
"budget": args.searcher_budget,
|
|
"type": args.searcher_type,
|
|
"engine": args.searcher_engine,
|
|
"agent_name": "searcher"
|
|
}
|
|
|
|
# --- Initialize Worker Path ---
|
|
num_envs = args.num_envs
|
|
# only for waa
|
|
if args.benchmark == "waa":
|
|
logger.info(f"[WindowsAgentArena] Initializing storage for {num_envs} workers from golden image: {args.path_to_vm}")
|
|
for i in range(num_envs):
|
|
s_path, b_path = prepare_worker_vm_paths(args.path_to_vm, i)
|
|
initialize_worker_files(args.path_to_vm, b_path, s_path)
|
|
|
|
with Manager() as manager:
|
|
shared_scores = manager.list()
|
|
task_queue = manager.Queue()
|
|
for item in all_tasks:
|
|
task_queue.put(item)
|
|
processes = []
|
|
for worker_id in range(num_envs):
|
|
p = Process(
|
|
target=run_env_tasks,
|
|
args=(
|
|
task_queue,
|
|
args,
|
|
shared_scores,
|
|
engine_params_for_orchestrator,
|
|
engine_params_for_grounder,
|
|
engine_params_for_coder,
|
|
engine_params_for_memoryer,
|
|
engine_params_for_searcher,
|
|
worker_id
|
|
),
|
|
name=f"EnvProcess-{worker_id+1}",
|
|
)
|
|
p.daemon = True
|
|
p.start()
|
|
processes.append(p)
|
|
logger.info(f"Started process {p.name} with PID {p.pid}")
|
|
try:
|
|
while True:
|
|
alive_count = 0
|
|
for idx, p in enumerate(processes):
|
|
if not p.is_alive():
|
|
logger.warning(f"Process {p.name} died, restarting...")
|
|
new_p = Process(
|
|
target=run_env_tasks,
|
|
args=(
|
|
task_queue,
|
|
args,
|
|
shared_scores,
|
|
engine_params_for_orchestrator,
|
|
engine_params_for_grounder,
|
|
engine_params_for_coder,
|
|
engine_params_for_memoryer,
|
|
engine_params_for_searcher,
|
|
idx
|
|
),
|
|
name=f"EnvProcess-Restart-{idx+1}",
|
|
)
|
|
new_p.daemon = True
|
|
new_p.start()
|
|
processes[idx] = new_p
|
|
logger.info(
|
|
f"Restarted process {new_p.name} with PID {new_p.pid}"
|
|
)
|
|
else:
|
|
alive_count += 1
|
|
if task_queue.empty():
|
|
logger.info("All tasks finished.")
|
|
break
|
|
if alive_count == 0:
|
|
logger.error("All processes died, exiting.")
|
|
break
|
|
time.sleep(5)
|
|
for p in processes:
|
|
p.join()
|
|
except KeyboardInterrupt:
|
|
logger.info(
|
|
"Main process received KeyboardInterrupt. Initiating graceful shutdown..."
|
|
)
|
|
raise
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Unexpected error while waiting for processes: {e}", exc_info=True
|
|
)
|
|
for p in processes:
|
|
if p.is_alive():
|
|
try:
|
|
logger.info(f"Terminating process {p.name} due to error...")
|
|
p.terminate()
|
|
except Exception as term_e:
|
|
logger.error(f"Error terminating process {p.name}: {term_e}")
|
|
raise
|
|
scores = list(shared_scores)
|
|
logger.info(f"Average score: {sum(scores) / len(scores) if scores else 0}")
|
|
|
|
def get_unfinished(
|
|
target_dir, total_file_json
|
|
):
|
|
|
|
if not os.path.exists(target_dir):
|
|
return total_file_json
|
|
|
|
finished = {}
|
|
for domain in os.listdir(target_dir):
|
|
finished[domain] = []
|
|
domain_path = os.path.join(target_dir, domain)
|
|
if os.path.isdir(domain_path):
|
|
for example_id in os.listdir(domain_path):
|
|
if example_id == "onboard":
|
|
continue
|
|
example_path = os.path.join(domain_path, example_id)
|
|
if os.path.isdir(example_path):
|
|
if "result.txt" not in os.listdir(example_path):
|
|
# empty all files under example_id
|
|
for file in os.listdir(example_path):
|
|
os.remove(os.path.join(example_path, file))
|
|
else:
|
|
finished[domain].append(example_id)
|
|
|
|
if not finished:
|
|
return total_file_json
|
|
|
|
for domain, examples in finished.items():
|
|
if domain in total_file_json:
|
|
total_file_json[domain] = [
|
|
x for x in total_file_json[domain] if x not in examples
|
|
]
|
|
|
|
return total_file_json
|
|
|
|
|
|
def get_result(target_dir, total_file_json: dict):
|
|
if not os.path.exists(target_dir):
|
|
print("New experiment, no result yet.")
|
|
return None
|
|
|
|
# list for all tasks
|
|
all_result = []
|
|
|
|
for domain, example_id_list in total_file_json.items():
|
|
for example_id in example_id_list:
|
|
example_path = os.path.join(target_dir, domain, example_id)
|
|
if os.path.isdir(example_path):
|
|
if "result.txt" in os.listdir(example_path):
|
|
# empty all files under example_id
|
|
try:
|
|
all_result.append(
|
|
float(
|
|
open(
|
|
os.path.join(example_path, "result.txt"), "r"
|
|
).read()
|
|
)
|
|
)
|
|
except:
|
|
all_result.append(0.0)
|
|
else:
|
|
all_result.append(0.0)
|
|
else:
|
|
all_result.append(0.0)
|
|
|
|
if not all_result:
|
|
print("New experiment, no result yet.")
|
|
return None
|
|
else:
|
|
print("Current Success Rate:", sum(all_result) / len(all_result) * 100, "%")
|
|
return all_result
|
|
|
|
|
|
if __name__ == "__main__":
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
####### The complete version of the list of examples #######
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
args = config()
|
|
|
|
if args.exp_name != "":
|
|
args.result_dir = os.path.join(
|
|
args.result_dir,
|
|
args.exp_name
|
|
)
|
|
else:
|
|
args.result_dir = os.path.join(
|
|
args.result_dir,
|
|
args.action_space,
|
|
args.observation_type,
|
|
args.model
|
|
)
|
|
|
|
path_to_args = os.path.join(
|
|
args.result_dir,
|
|
"args.json"
|
|
)
|
|
os.makedirs(os.path.dirname(path_to_args), exist_ok=True)
|
|
with open(path_to_args, "w", encoding="utf-8") as f:
|
|
json.dump(vars(args), f, indent=4)
|
|
|
|
with open(args.test_all_meta_path, "r", encoding="utf-8") as f:
|
|
test_all_meta = json.load(f)
|
|
|
|
if args.domain != "all":
|
|
test_all_meta = {args.domain: test_all_meta[args.domain]}
|
|
|
|
|
|
logger.info(f"====================\nExperiment on {args.benchmark} is started\n====================")
|
|
test_file_list = get_unfinished(
|
|
target_dir=args.result_dir,
|
|
total_file_json=test_all_meta,
|
|
)
|
|
left_info = ""
|
|
for domain in test_file_list:
|
|
left_info += f"{domain}: {len(test_file_list[domain])}\n"
|
|
logger.info(f"Left tasks:\n{left_info}")
|
|
|
|
get_result(
|
|
target_dir=args.result_dir,
|
|
total_file_json=test_all_meta
|
|
)
|
|
test(
|
|
args,
|
|
test_file_list
|
|
)
|
|
logger.info(f"====================\nExperiment on {args.benchmark} is ended\n====================")
|
|
|
|
logger.info(f"====================\nExperiment {args.exp_name} is totally ended!\n====================")
|