Files
sci-gui-agent-benchmark/main.py
2024-03-14 22:36:33 +08:00

109 lines
3.2 KiB
Python

import datetime
import json
import logging
import os
import sys
import time
from desktop_env.envs.desktop_env import DesktopEnv
# Logger Configs {{{ #
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S")
file_handler = logging.FileHandler(os.path.join("logs", "normal-{:}.log".format(datetime_str)), encoding="utf-8")
debug_handler = logging.FileHandler(os.path.join("logs", "debug-{:}.log".format(datetime_str)), encoding="utf-8")
stdout_handler = logging.StreamHandler(sys.stdout)
sdebug_handler = logging.FileHandler(os.path.join("logs", "sdebug-{:}.log".format(datetime_str)), encoding="utf-8")
file_handler.setLevel(logging.INFO)
debug_handler.setLevel(logging.DEBUG)
stdout_handler.setLevel(logging.INFO)
sdebug_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s")
file_handler.setFormatter(formatter)
debug_handler.setFormatter(formatter)
stdout_handler.setFormatter(formatter)
sdebug_handler.setFormatter(formatter)
stdout_handler.addFilter(logging.Filter("desktopenv"))
sdebug_handler.addFilter(logging.Filter("desktopenv"))
logger.addHandler(file_handler)
logger.addHandler(debug_handler)
logger.addHandler(stdout_handler)
logger.addHandler(sdebug_handler)
# }}} Logger Configs #
logger = logging.getLogger("desktopenv.main")
def human_agent():
"""
Runs the Gym environment with human input.
"""
with open("evaluation_examples/examples/multi_apps/4c26e3f3-3a14-4d86-b44a-d3cedebbb487.json", "r", encoding="utf-8") as f:
example = json.load(f)
example["snapshot"] = "exp_v5"
env = DesktopEnv(
path_to_vm=r"C:\Users\tianbaox\Documents\Virtual Machines\Ubuntu3\Ubuntu3.vmx",
action_space="computer_13",
task_config=example
)
# reset the environment to certain snapshot
observation = env.reset()
done = False
trajectory = [
{
"action_type": "MOVE_TO", #
"parameters": {
"x": 754,
"y": 1057
}
},
{"action_type": "CLICK", "parameters": {"button": "right", "num_clicks": 1}}
]
for i in range(len(trajectory)):
# action = get_human_action()
# action = {
# "action_type": 0,
# "click_type": 3,
# }
logger.info(trajectory[i])
observation, reward, done, info = env.step(trajectory[i])
observation.pop("accessibility_tree")
logger.info("Observation: %s", observation)
logger.info("Reward: %.2f", reward)
logger.info("Info: %s", info)
logger.info("================================\n")
if done:
logger.info("The episode is done.")
break
input("Press Enter to start human operation...")
human_start_time = time.time()
input("Press Enter to finish human operation.")
print("Time elapsed of human operation: %.2f" % (time.time() - human_start_time))
result = env.evaluate()
logger.info("Result: %.2f", result)
# env.close()
logger.info("Environment closed.")
if __name__ == "__main__":
human_agent()