Files
sci-gui-agent-benchmark/mm_agents/dart_gui/utils.py
2025-11-07 21:50:01 +08:00

511 lines
21 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import ast
import base64
import logging
import math
import re
import xml.etree.ElementTree as ET
from io import BytesIO
from typing import Dict, List
import numpy as np
import openai
from openai import OpenAI
from PIL import Image
from requests.exceptions import SSLError
from mm_agents.dart_gui.prompts import FAILURE_INDICATORS
# 设置日志系统
logger = logging.getLogger(__name__)
FINISH_WORD = "finished"
WAIT_WORD = "wait"
ENV_FAIL_WORD = "error_env"
CALL_USER = "call_user"
IMAGE_FACTOR = 28
MIN_PIXELS = 100 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200
pure_text_settings = ["a11y_tree"]
attributes_ns_ubuntu = "https://accessibility.windows.example.org/ns/attributes"
attributes_ns_windows = "https://accessibility.windows.example.org/ns/attributes"
state_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/state"
state_ns_windows = "https://accessibility.windows.example.org/ns/state"
component_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/component"
component_ns_windows = "https://accessibility.windows.example.org/ns/component"
value_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/value"
value_ns_windows = "https://accessibility.windows.example.org/ns/value"
class_ns_windows = "https://accessibility.windows.example.org/ns/class"
# More namespaces defined in OSWorld, please check desktop_env/server/main.py
# 定义一个函数来解析每个 action
def parse_action(action_str):
try:
# 解析字符串为 AST 节点
node = ast.parse(action_str, mode='eval')
# 确保节点是一个表达式
if not isinstance(node, ast.Expression):
raise ValueError("Not an expression")
# 获取表达式的主体
call = node.body
# 确保主体是一个函数调用
if not isinstance(call, ast.Call):
raise ValueError("Not a function call")
# 获取函数名
if isinstance(call.func, ast.Name):
func_name = call.func.id
elif isinstance(call.func, ast.Attribute):
func_name = call.func.attr
else:
func_name = None
# 获取关键字参数
kwargs = {}
for kw in call.keywords:
key = kw.arg
# 处理不同类型的值,这里假设都是常量
if isinstance(kw.value, ast.Constant):
value = kw.value.value
elif isinstance(kw.value, ast.Str): # 兼容旧版本 Python
value = kw.value.s
else:
value = None
kwargs[key] = value
return {
'function': func_name,
'args': kwargs
}
except Exception as e:
logger.error(f"Failed to parse action '{action_str}': {e}")
return None
def escape_single_quotes(text):
# 匹配未转义的单引号(不匹配 \\'
pattern = r"(?<!\\)'"
return re.sub(pattern, r"\\'", text)
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def linear_resize(
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
if width * height > max_pixels:
"""
如果图片超过/低于像素限制则计算一个缩放因子resize_factor使图片的像素数缩小到等于或小于max_pixels。这个缩放因子是通过开平方根计算的确保纵横比保持不变,这样原始的相对坐标可以不经转换直接复用
"""
resize_factor = math.sqrt(max_pixels / (width * height))
width, height = int(width * resize_factor), int(height * resize_factor)
if width * height < min_pixels:
resize_factor = math.sqrt(min_pixels / (width * height))
width, height = math.ceil(width * resize_factor), math.ceil(height * resize_factor)
return height, width
def smart_resize(
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
"""
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if max(height, width) / min(height, width) > MAX_RATIO:
raise ValueError(
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
)
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
return h_bar, w_bar
def parse_action_to_structure_output(text, factor, origin_resized_height, origin_resized_width, model_type, max_pixels=16384*28*28, min_pixels=100*28*28):
text = text.strip()
if model_type == "qwen25vl":
smart_resize_height, smart_resize_width = smart_resize(origin_resized_height, origin_resized_width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
# 正则表达式匹配 Action 字符串
if text.startswith("Thought:"):
thought_pattern = r"Thought: (.+?)(?=\s*Action:|$)"
thought_hint = "Thought: "
elif text.startswith("Reflection:"):
thought_pattern = r"Reflection: (.+?)Action_Summary: (.+?)(?=\s*Action:|$)"
thought_hint = "Reflection: "
elif text.startswith("Action_Summary:"):
thought_pattern = r"Action_Summary: (.+?)(?=\s*Action:|$)"
thought_hint = "Action_Summary: "
else:
thought_pattern = r"Thought: (.+?)(?=\s*Action:|$)"
thought_hint = "Thought: "
reflection, thought = None, None
thought_match = re.search(thought_pattern, text, re.DOTALL)
if thought_match:
if len(thought_match.groups()) == 1:
thought = thought_match.group(1).strip()
elif len(thought_match.groups()) == 2:
thought = thought_match.group(2).strip()
reflection = thought_match.group(1).strip()
assert "Action:" in text
action_str = text.split("Action:")[-1]
tmp_all_action = action_str.split("\n\n")
all_action = []
for action_str in tmp_all_action:
if "type(content" in action_str:
# 正则表达式匹配 content 中的字符串并转义单引号
def escape_quotes(match):
content = match.group(1) # 获取 content 的值
return content
# 使用正则表达式进行替换
pattern = r"type\(content='(.*?)'\)" # 匹配 type(content='...')
content = re.sub(pattern, escape_quotes, action_str)
# 处理字符串
action_str = escape_single_quotes(content)
action_str = "type(content='" + action_str + "')"
if "finished(content" in action_str:
# 正则表达式匹配 content 中的字符串并转义单引号
def escape_quotes(match):
content = match.group(1) # 获取 content 的值
return content
# 使用正则表达式进行替换
pattern = r"finished\(content='(.*?)'\)" # 匹配 type(content='...')
content = re.sub(pattern, escape_quotes, action_str)
# 处理字符串
action_str = escape_single_quotes(content)
action_str = "finished(content='" + action_str + "')"
all_action.append(action_str)
parsed_actions = [parse_action(action.replace("\n","\\n").lstrip()) for action in all_action]
actions = []
for action_instance, raw_str in zip(parsed_actions, all_action):
if action_instance == None:
logger.error(f"Action can't parse: {raw_str}")
# raise ValueError(f"Action can't parse: {raw_str}")
continue
action_type = action_instance["function"]
params = action_instance["args"]
# import pdb; pdb.set_trace()
action_inputs = {}
for param_name, param in params.items():
if param == "": continue
param = param.lstrip() # 去掉引号和多余的空格
# 处理start_box或者end_box参数格式 '<bbox>x1 y1 x2 y2</bbox>'
action_inputs[param_name.strip()] = param
if "start_box" in param_name or "end_box" in param_name:
ori_box = param
# Remove parentheses and split the string by commas
numbers = ori_box.replace("(", "").replace(")", "").split(",")
# Convert to float and scale by 1000
# Qwen2.5vl output absolute coordinates, qwen2vl output relative coordinates
if model_type == "qwen25vl":
float_numbers = []
for num_idx, num in enumerate(numbers):
num = float(num)
if (num_idx + 1) % 2 == 0:
float_numbers.append(float(num/smart_resize_height))
else:
float_numbers.append(float(num/smart_resize_width))
else:
float_numbers = [float(num) / factor for num in numbers]
if len(float_numbers) == 2:
float_numbers = [float_numbers[0], float_numbers[1], float_numbers[0], float_numbers[1]]
action_inputs[param_name.strip()] = str(float_numbers)
# import pdb; pdb.set_trace()
actions.append(
{
"reflection": reflection,
"thought": thought,
"action_type": action_type,
"action_inputs": action_inputs,
"text": text
})
return actions
def parsing_response_to_pyautogui_code(responses, image_height: int, image_width:int, input_swap:bool=True) -> str:
'''
将M模型的输出解析为OSWorld中的action生成pyautogui代码字符串
参数:
response: 包含模型输出的字典,结构类似于:
{
"action_type": "hotkey",
"action_inputs": {
"hotkey": "v ctrl",
"start_box": None,
"end_box": None
}
}
返回:
生成的pyautogui代码字符串
'''
pyautogui_code = "import pyautogui\nimport time\n"
if isinstance(responses, dict):
responses = [responses]
for response_id, response in enumerate(responses):
if "observation" in response:
observation = response["observation"]
else:
observation = ""
if "thought" in response:
thought = response["thought"]
else:
thought = ""
if response_id == 0:
pyautogui_code += f"'''\nObservation:\n{observation}\n\nThought:\n{thought}\n'''\n"
else:
pyautogui_code += "\ntime.sleep(1)\n"
action_dict = response
response_text = action_dict.get("text", "")
action_type = action_dict.get("action_type")
action_inputs = action_dict.get("action_inputs", {})
if action_type == "hotkey":
# Parsing hotkey action
if "key" in action_inputs:
hotkey = action_inputs.get("key", "")
else:
hotkey = action_inputs.get("hotkey", "")
if hotkey == "arrowleft":
hotkey = "left"
elif hotkey == "arrowright":
hotkey = "right"
elif hotkey == "arrowup":
hotkey = "up"
elif hotkey == "arrowdown":
hotkey = "down"
if hotkey:
# Handle other hotkeys
keys = hotkey.split() # Split the keys by space
convert_keys = []
for key in keys:
if key == "space":
key = ' '
convert_keys.append(key)
pyautogui_code += f"\npyautogui.hotkey({', '.join([repr(k) for k in convert_keys])})"
elif action_type == "press":
# Parsing press action
if "key" in action_inputs:
key_to_press = action_inputs.get("key", "")
else:
key_to_press = action_inputs.get("press", "")
if hotkey == "arrowleft":
hotkey = "left"
elif hotkey == "arrowright":
hotkey = "right"
elif hotkey == "arrowup":
hotkey = "up"
elif hotkey == "arrowdown":
hotkey = "down"
elif hotkey == "space":
hotkey = " "
if key_to_press:
# Simulate pressing a single key
pyautogui_code += f"\npyautogui.press({repr(key_to_press)})"
elif action_type == "keyup":
key_to_up = action_inputs.get("key", "")
pyautogui_code += f"\npyautogui.keyUp({repr(key_to_up)})"
elif action_type == "keydown":
key_to_down = action_inputs.get("key", "")
pyautogui_code += f"\npyautogui.keyDown({repr(key_to_down)})"
elif action_type == "type":
# Parsing typing action using clipboard
content = action_inputs.get("content", "")
content = escape_single_quotes(content)
stripped_content = content
if content.endswith("\n") or content.endswith("\\n"):
stripped_content = stripped_content.rstrip("\\n").rstrip("\n")
if content:
if input_swap:
pyautogui_code += "\nimport pyperclip"
pyautogui_code += f"\npyperclip.copy('{stripped_content}')"
pyautogui_code += "\npyautogui.hotkey('ctrl', 'v')"
pyautogui_code += "\ntime.sleep(0.5)\n"
if content.endswith("\n") or content.endswith("\\n"):
pyautogui_code += "\npyautogui.press('enter')"
else:
pyautogui_code += f"\npyautogui.write('{stripped_content}', interval=0.1)"
pyautogui_code += "\ntime.sleep(0.5)\n"
if content.endswith("\n") or content.endswith("\\n"):
pyautogui_code += "\npyautogui.press('enter')"
elif action_type in ["drag", "select"]:
# Parsing drag or select action based on start and end_boxes
start_box = action_inputs.get("start_box")
end_box = action_inputs.get("end_box")
if start_box and end_box:
x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2]
sx = round(float((x1 + x2) / 2) * image_width, 3)
sy = round(float((y1 + y2) / 2) * image_height, 3)
x1, y1, x2, y2 = eval(end_box) # Assuming box is in [x1, y1, x2, y2]
ex = round(float((x1 + x2) / 2) * image_width, 3)
ey = round(float((y1 + y2) / 2) * image_height, 3)
pyautogui_code += (
f"\npyautogui.moveTo({sx}, {sy})\n"
f"\npyautogui.dragTo({ex}, {ey}, duration=1.0)\n"
)
elif action_type == "scroll":
# Parsing scroll action
start_box = action_inputs.get("start_box")
if start_box:
x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2]
x = round(float((x1 + x2) / 2) * image_width, 3)
y = round(float((y1 + y2) / 2) * image_height, 3)
# # 先点对应区域,再滚动
# pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')"
else:
x = None
y = None
direction = action_inputs.get("direction", "")
if x == None:
if "up" in direction.lower():
pyautogui_code += "\npyautogui.scroll(5)"
elif "down" in direction.lower():
pyautogui_code += "\npyautogui.scroll(-5)"
else:
if "up" in direction.lower():
pyautogui_code += f"\npyautogui.scroll(5, x={x}, y={y})"
elif "down" in direction.lower():
pyautogui_code += f"\npyautogui.scroll(-5, x={x}, y={y})"
elif action_type in ["click", "left_single", "left_double", "right_single", "hover"]:
# Parsing mouse click actions
start_box = action_inputs.get("start_box")
start_box = str(start_box)
if start_box:
start_box = eval(start_box)
if start_box is None:
logger.warning(f"[Warning] start_box is None and wired condition:\n{action_inputs}")
if len(start_box) == 4:
x1, y1, x2, y2 = start_box # Assuming box is in [x1, y1, x2, y2]
elif len(start_box) == 2:
x1, y1 = start_box
x2 = x1
y2 = y1
x = round(float((x1 + x2) / 2) * image_width, 3)
y = round(float((y1 + y2) / 2) * image_height, 3)
if action_type == "left_single" or action_type == "click":
pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')"
elif action_type == "left_double":
pyautogui_code += f"\npyautogui.doubleClick({x}, {y}, button='left')"
elif action_type == "right_single":
pyautogui_code += f"\npyautogui.click({x}, {y}, button='right')"
elif action_type == "hover":
pyautogui_code += f"\npyautogui.moveTo({x}, {y})"
elif action_type in ["finished"]:
pyautogui_code = "DONE"
print(f"FINISHED:response_text: {response_text}")
print(f"FINISHED:response: {str(response)}")
for failure_indicator in FAILURE_INDICATORS:
if failure_indicator in response_text:
pyautogui_code = "FAIL"
break
elif action_type in ["wait"]:
pyautogui_code = "WAIT"
elif action_type in ["call_user"]:
pyautogui_code = "FAIL"
else:
pyautogui_code += f"\n# Unrecognized action type: {action_type}"
return pyautogui_code
def add_box_token(input_string):
# Step 1: Split the string into individual actions
if "Action: " in input_string and "start_box=" in input_string:
suffix = input_string.split("Action: ")[0] + "Action: "
actions = input_string.split("Action: ")[1:]
processed_actions = []
for action in actions:
action = action.strip()
# Step 2: Extract coordinates (start_box or end_box) using regex
coordinates = re.findall(r"(start_box|end_box)='\((\d+),\s*(\d+)\)'", action)
updated_action = action # Start with the original action
for coord_type, x, y in coordinates:
# Convert x and y to integers
updated_action = updated_action.replace(f"{coord_type}='({x},{y})'", f"{coord_type}='<|box_start|>({x},{y})<|box_end|>'")
processed_actions.append(updated_action)
# Step 5: Reconstruct the final string
final_string = suffix + "\n\n".join(processed_actions)
else:
final_string = input_string
# print(f"Input string: {input_string}")
# print(f"Final string: {final_string}")
return [{"type": "text", "text": final_string}]
def pil_to_base64(image):
"""Convert PIL Image or bytes to base64 string"""
if isinstance(image, bytes):
# If it's already bytes, just encode to base64
return base64.b64encode(image).decode("utf-8")
else:
# If it's a PIL Image, convert it
buffer = BytesIO()
image.save(buffer, format="PNG")
return base64.b64encode(buffer.getvalue()).decode("utf-8")