511 lines
21 KiB
Python
511 lines
21 KiB
Python
import ast
|
||
import base64
|
||
import logging
|
||
import math
|
||
import re
|
||
import xml.etree.ElementTree as ET
|
||
from io import BytesIO
|
||
from typing import Dict, List
|
||
|
||
import numpy as np
|
||
import openai
|
||
|
||
from openai import OpenAI
|
||
from PIL import Image
|
||
from requests.exceptions import SSLError
|
||
from mm_agents.dart_gui.prompts import FAILURE_INDICATORS
|
||
|
||
# 设置日志系统
|
||
logger = logging.getLogger(__name__)
|
||
|
||
FINISH_WORD = "finished"
|
||
WAIT_WORD = "wait"
|
||
ENV_FAIL_WORD = "error_env"
|
||
CALL_USER = "call_user"
|
||
|
||
IMAGE_FACTOR = 28
|
||
MIN_PIXELS = 100 * 28 * 28
|
||
MAX_PIXELS = 16384 * 28 * 28
|
||
MAX_RATIO = 200
|
||
|
||
pure_text_settings = ["a11y_tree"]
|
||
|
||
attributes_ns_ubuntu = "https://accessibility.windows.example.org/ns/attributes"
|
||
attributes_ns_windows = "https://accessibility.windows.example.org/ns/attributes"
|
||
state_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/state"
|
||
state_ns_windows = "https://accessibility.windows.example.org/ns/state"
|
||
component_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/component"
|
||
component_ns_windows = "https://accessibility.windows.example.org/ns/component"
|
||
value_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/value"
|
||
value_ns_windows = "https://accessibility.windows.example.org/ns/value"
|
||
class_ns_windows = "https://accessibility.windows.example.org/ns/class"
|
||
# More namespaces defined in OSWorld, please check desktop_env/server/main.py
|
||
|
||
# 定义一个函数来解析每个 action
|
||
def parse_action(action_str):
|
||
try:
|
||
# 解析字符串为 AST 节点
|
||
node = ast.parse(action_str, mode='eval')
|
||
|
||
# 确保节点是一个表达式
|
||
if not isinstance(node, ast.Expression):
|
||
raise ValueError("Not an expression")
|
||
|
||
# 获取表达式的主体
|
||
call = node.body
|
||
|
||
# 确保主体是一个函数调用
|
||
if not isinstance(call, ast.Call):
|
||
raise ValueError("Not a function call")
|
||
|
||
# 获取函数名
|
||
if isinstance(call.func, ast.Name):
|
||
func_name = call.func.id
|
||
elif isinstance(call.func, ast.Attribute):
|
||
func_name = call.func.attr
|
||
else:
|
||
func_name = None
|
||
|
||
# 获取关键字参数
|
||
kwargs = {}
|
||
for kw in call.keywords:
|
||
key = kw.arg
|
||
# 处理不同类型的值,这里假设都是常量
|
||
if isinstance(kw.value, ast.Constant):
|
||
value = kw.value.value
|
||
elif isinstance(kw.value, ast.Str): # 兼容旧版本 Python
|
||
value = kw.value.s
|
||
else:
|
||
value = None
|
||
kwargs[key] = value
|
||
|
||
return {
|
||
'function': func_name,
|
||
'args': kwargs
|
||
}
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to parse action '{action_str}': {e}")
|
||
return None
|
||
|
||
def escape_single_quotes(text):
|
||
# 匹配未转义的单引号(不匹配 \\')
|
||
pattern = r"(?<!\\)'"
|
||
return re.sub(pattern, r"\\'", text)
|
||
|
||
def round_by_factor(number: int, factor: int) -> int:
|
||
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
||
return round(number / factor) * factor
|
||
|
||
|
||
def ceil_by_factor(number: int, factor: int) -> int:
|
||
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
||
return math.ceil(number / factor) * factor
|
||
|
||
|
||
def floor_by_factor(number: int, factor: int) -> int:
|
||
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
||
return math.floor(number / factor) * factor
|
||
|
||
def linear_resize(
|
||
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
||
) -> tuple[int, int]:
|
||
if width * height > max_pixels:
|
||
"""
|
||
如果图片超过/低于像素限制,则计算一个缩放因子resize_factor,使图片的像素数缩小到等于或小于max_pixels。这个缩放因子是通过开平方根计算的,确保纵横比保持不变,这样原始的相对坐标可以不经转换直接复用
|
||
"""
|
||
resize_factor = math.sqrt(max_pixels / (width * height))
|
||
width, height = int(width * resize_factor), int(height * resize_factor)
|
||
if width * height < min_pixels:
|
||
resize_factor = math.sqrt(min_pixels / (width * height))
|
||
width, height = math.ceil(width * resize_factor), math.ceil(height * resize_factor)
|
||
|
||
return height, width
|
||
|
||
def smart_resize(
|
||
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
||
) -> tuple[int, int]:
|
||
"""
|
||
Rescales the image so that the following conditions are met:
|
||
|
||
1. Both dimensions (height and width) are divisible by 'factor'.
|
||
|
||
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
||
|
||
3. The aspect ratio of the image is maintained as closely as possible.
|
||
"""
|
||
if max(height, width) / min(height, width) > MAX_RATIO:
|
||
raise ValueError(
|
||
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
||
)
|
||
h_bar = max(factor, round_by_factor(height, factor))
|
||
w_bar = max(factor, round_by_factor(width, factor))
|
||
if h_bar * w_bar > max_pixels:
|
||
beta = math.sqrt((height * width) / max_pixels)
|
||
h_bar = floor_by_factor(height / beta, factor)
|
||
w_bar = floor_by_factor(width / beta, factor)
|
||
elif h_bar * w_bar < min_pixels:
|
||
beta = math.sqrt(min_pixels / (height * width))
|
||
h_bar = ceil_by_factor(height * beta, factor)
|
||
w_bar = ceil_by_factor(width * beta, factor)
|
||
return h_bar, w_bar
|
||
|
||
def parse_action_to_structure_output(text, factor, origin_resized_height, origin_resized_width, model_type, max_pixels=16384*28*28, min_pixels=100*28*28):
|
||
text = text.strip()
|
||
if model_type == "qwen25vl":
|
||
smart_resize_height, smart_resize_width = smart_resize(origin_resized_height, origin_resized_width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
|
||
|
||
# 正则表达式匹配 Action 字符串
|
||
if text.startswith("Thought:"):
|
||
thought_pattern = r"Thought: (.+?)(?=\s*Action:|$)"
|
||
thought_hint = "Thought: "
|
||
elif text.startswith("Reflection:"):
|
||
thought_pattern = r"Reflection: (.+?)Action_Summary: (.+?)(?=\s*Action:|$)"
|
||
thought_hint = "Reflection: "
|
||
elif text.startswith("Action_Summary:"):
|
||
thought_pattern = r"Action_Summary: (.+?)(?=\s*Action:|$)"
|
||
thought_hint = "Action_Summary: "
|
||
else:
|
||
thought_pattern = r"Thought: (.+?)(?=\s*Action:|$)"
|
||
thought_hint = "Thought: "
|
||
reflection, thought = None, None
|
||
thought_match = re.search(thought_pattern, text, re.DOTALL)
|
||
if thought_match:
|
||
if len(thought_match.groups()) == 1:
|
||
thought = thought_match.group(1).strip()
|
||
elif len(thought_match.groups()) == 2:
|
||
thought = thought_match.group(2).strip()
|
||
reflection = thought_match.group(1).strip()
|
||
assert "Action:" in text
|
||
action_str = text.split("Action:")[-1]
|
||
|
||
tmp_all_action = action_str.split("\n\n")
|
||
all_action = []
|
||
for action_str in tmp_all_action:
|
||
if "type(content" in action_str:
|
||
# 正则表达式匹配 content 中的字符串并转义单引号
|
||
def escape_quotes(match):
|
||
content = match.group(1) # 获取 content 的值
|
||
return content
|
||
|
||
# 使用正则表达式进行替换
|
||
pattern = r"type\(content='(.*?)'\)" # 匹配 type(content='...')
|
||
content = re.sub(pattern, escape_quotes, action_str)
|
||
|
||
# 处理字符串
|
||
action_str = escape_single_quotes(content)
|
||
action_str = "type(content='" + action_str + "')"
|
||
|
||
if "finished(content" in action_str:
|
||
# 正则表达式匹配 content 中的字符串并转义单引号
|
||
def escape_quotes(match):
|
||
content = match.group(1) # 获取 content 的值
|
||
return content
|
||
|
||
# 使用正则表达式进行替换
|
||
pattern = r"finished\(content='(.*?)'\)" # 匹配 type(content='...')
|
||
content = re.sub(pattern, escape_quotes, action_str)
|
||
|
||
# 处理字符串
|
||
action_str = escape_single_quotes(content)
|
||
action_str = "finished(content='" + action_str + "')"
|
||
all_action.append(action_str)
|
||
|
||
parsed_actions = [parse_action(action.replace("\n","\\n").lstrip()) for action in all_action]
|
||
actions = []
|
||
for action_instance, raw_str in zip(parsed_actions, all_action):
|
||
if action_instance == None:
|
||
logger.error(f"Action can't parse: {raw_str}")
|
||
# raise ValueError(f"Action can't parse: {raw_str}")
|
||
continue
|
||
action_type = action_instance["function"]
|
||
params = action_instance["args"]
|
||
|
||
# import pdb; pdb.set_trace()
|
||
action_inputs = {}
|
||
for param_name, param in params.items():
|
||
if param == "": continue
|
||
param = param.lstrip() # 去掉引号和多余的空格
|
||
# 处理start_box或者end_box参数格式 '<bbox>x1 y1 x2 y2</bbox>'
|
||
action_inputs[param_name.strip()] = param
|
||
|
||
if "start_box" in param_name or "end_box" in param_name:
|
||
ori_box = param
|
||
# Remove parentheses and split the string by commas
|
||
numbers = ori_box.replace("(", "").replace(")", "").split(",")
|
||
|
||
# Convert to float and scale by 1000
|
||
# Qwen2.5vl output absolute coordinates, qwen2vl output relative coordinates
|
||
if model_type == "qwen25vl":
|
||
float_numbers = []
|
||
for num_idx, num in enumerate(numbers):
|
||
num = float(num)
|
||
if (num_idx + 1) % 2 == 0:
|
||
float_numbers.append(float(num/smart_resize_height))
|
||
else:
|
||
float_numbers.append(float(num/smart_resize_width))
|
||
else:
|
||
float_numbers = [float(num) / factor for num in numbers]
|
||
|
||
if len(float_numbers) == 2:
|
||
float_numbers = [float_numbers[0], float_numbers[1], float_numbers[0], float_numbers[1]]
|
||
action_inputs[param_name.strip()] = str(float_numbers)
|
||
|
||
# import pdb; pdb.set_trace()
|
||
actions.append(
|
||
{
|
||
"reflection": reflection,
|
||
"thought": thought,
|
||
"action_type": action_type,
|
||
"action_inputs": action_inputs,
|
||
"text": text
|
||
})
|
||
return actions
|
||
|
||
def parsing_response_to_pyautogui_code(responses, image_height: int, image_width:int, input_swap:bool=True) -> str:
|
||
'''
|
||
将M模型的输出解析为OSWorld中的action,生成pyautogui代码字符串
|
||
参数:
|
||
response: 包含模型输出的字典,结构类似于:
|
||
{
|
||
"action_type": "hotkey",
|
||
"action_inputs": {
|
||
"hotkey": "v ctrl",
|
||
"start_box": None,
|
||
"end_box": None
|
||
}
|
||
}
|
||
返回:
|
||
生成的pyautogui代码字符串
|
||
'''
|
||
|
||
pyautogui_code = "import pyautogui\nimport time\n"
|
||
if isinstance(responses, dict):
|
||
responses = [responses]
|
||
for response_id, response in enumerate(responses):
|
||
if "observation" in response:
|
||
observation = response["observation"]
|
||
else:
|
||
observation = ""
|
||
|
||
if "thought" in response:
|
||
thought = response["thought"]
|
||
else:
|
||
thought = ""
|
||
|
||
if response_id == 0:
|
||
pyautogui_code += f"'''\nObservation:\n{observation}\n\nThought:\n{thought}\n'''\n"
|
||
else:
|
||
pyautogui_code += "\ntime.sleep(1)\n"
|
||
|
||
action_dict = response
|
||
response_text = action_dict.get("text", "")
|
||
action_type = action_dict.get("action_type")
|
||
action_inputs = action_dict.get("action_inputs", {})
|
||
|
||
if action_type == "hotkey":
|
||
# Parsing hotkey action
|
||
if "key" in action_inputs:
|
||
hotkey = action_inputs.get("key", "")
|
||
else:
|
||
hotkey = action_inputs.get("hotkey", "")
|
||
|
||
if hotkey == "arrowleft":
|
||
hotkey = "left"
|
||
|
||
elif hotkey == "arrowright":
|
||
hotkey = "right"
|
||
|
||
elif hotkey == "arrowup":
|
||
hotkey = "up"
|
||
|
||
elif hotkey == "arrowdown":
|
||
hotkey = "down"
|
||
|
||
if hotkey:
|
||
# Handle other hotkeys
|
||
keys = hotkey.split() # Split the keys by space
|
||
convert_keys = []
|
||
for key in keys:
|
||
if key == "space":
|
||
key = ' '
|
||
convert_keys.append(key)
|
||
pyautogui_code += f"\npyautogui.hotkey({', '.join([repr(k) for k in convert_keys])})"
|
||
|
||
elif action_type == "press":
|
||
# Parsing press action
|
||
if "key" in action_inputs:
|
||
key_to_press = action_inputs.get("key", "")
|
||
else:
|
||
key_to_press = action_inputs.get("press", "")
|
||
|
||
if hotkey == "arrowleft":
|
||
hotkey = "left"
|
||
|
||
elif hotkey == "arrowright":
|
||
hotkey = "right"
|
||
|
||
elif hotkey == "arrowup":
|
||
hotkey = "up"
|
||
|
||
elif hotkey == "arrowdown":
|
||
hotkey = "down"
|
||
|
||
elif hotkey == "space":
|
||
hotkey = " "
|
||
|
||
if key_to_press:
|
||
# Simulate pressing a single key
|
||
pyautogui_code += f"\npyautogui.press({repr(key_to_press)})"
|
||
|
||
elif action_type == "keyup":
|
||
key_to_up = action_inputs.get("key", "")
|
||
pyautogui_code += f"\npyautogui.keyUp({repr(key_to_up)})"
|
||
|
||
elif action_type == "keydown":
|
||
key_to_down = action_inputs.get("key", "")
|
||
pyautogui_code += f"\npyautogui.keyDown({repr(key_to_down)})"
|
||
|
||
elif action_type == "type":
|
||
# Parsing typing action using clipboard
|
||
content = action_inputs.get("content", "")
|
||
content = escape_single_quotes(content)
|
||
stripped_content = content
|
||
if content.endswith("\n") or content.endswith("\\n"):
|
||
stripped_content = stripped_content.rstrip("\\n").rstrip("\n")
|
||
if content:
|
||
if input_swap:
|
||
pyautogui_code += "\nimport pyperclip"
|
||
pyautogui_code += f"\npyperclip.copy('{stripped_content}')"
|
||
pyautogui_code += "\npyautogui.hotkey('ctrl', 'v')"
|
||
pyautogui_code += "\ntime.sleep(0.5)\n"
|
||
if content.endswith("\n") or content.endswith("\\n"):
|
||
pyautogui_code += "\npyautogui.press('enter')"
|
||
else:
|
||
pyautogui_code += f"\npyautogui.write('{stripped_content}', interval=0.1)"
|
||
pyautogui_code += "\ntime.sleep(0.5)\n"
|
||
if content.endswith("\n") or content.endswith("\\n"):
|
||
pyautogui_code += "\npyautogui.press('enter')"
|
||
|
||
|
||
elif action_type in ["drag", "select"]:
|
||
# Parsing drag or select action based on start and end_boxes
|
||
start_box = action_inputs.get("start_box")
|
||
end_box = action_inputs.get("end_box")
|
||
if start_box and end_box:
|
||
x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2]
|
||
sx = round(float((x1 + x2) / 2) * image_width, 3)
|
||
sy = round(float((y1 + y2) / 2) * image_height, 3)
|
||
x1, y1, x2, y2 = eval(end_box) # Assuming box is in [x1, y1, x2, y2]
|
||
ex = round(float((x1 + x2) / 2) * image_width, 3)
|
||
ey = round(float((y1 + y2) / 2) * image_height, 3)
|
||
pyautogui_code += (
|
||
f"\npyautogui.moveTo({sx}, {sy})\n"
|
||
f"\npyautogui.dragTo({ex}, {ey}, duration=1.0)\n"
|
||
)
|
||
|
||
elif action_type == "scroll":
|
||
# Parsing scroll action
|
||
start_box = action_inputs.get("start_box")
|
||
if start_box:
|
||
x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2]
|
||
x = round(float((x1 + x2) / 2) * image_width, 3)
|
||
y = round(float((y1 + y2) / 2) * image_height, 3)
|
||
|
||
# # 先点对应区域,再滚动
|
||
# pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')"
|
||
else:
|
||
x = None
|
||
y = None
|
||
direction = action_inputs.get("direction", "")
|
||
|
||
if x == None:
|
||
if "up" in direction.lower():
|
||
pyautogui_code += "\npyautogui.scroll(5)"
|
||
elif "down" in direction.lower():
|
||
pyautogui_code += "\npyautogui.scroll(-5)"
|
||
else:
|
||
if "up" in direction.lower():
|
||
pyautogui_code += f"\npyautogui.scroll(5, x={x}, y={y})"
|
||
elif "down" in direction.lower():
|
||
pyautogui_code += f"\npyautogui.scroll(-5, x={x}, y={y})"
|
||
|
||
elif action_type in ["click", "left_single", "left_double", "right_single", "hover"]:
|
||
# Parsing mouse click actions
|
||
start_box = action_inputs.get("start_box")
|
||
start_box = str(start_box)
|
||
if start_box:
|
||
start_box = eval(start_box)
|
||
if start_box is None:
|
||
logger.warning(f"[Warning] start_box is None and wired condition:\n{action_inputs}")
|
||
|
||
if len(start_box) == 4:
|
||
x1, y1, x2, y2 = start_box # Assuming box is in [x1, y1, x2, y2]
|
||
elif len(start_box) == 2:
|
||
x1, y1 = start_box
|
||
x2 = x1
|
||
y2 = y1
|
||
x = round(float((x1 + x2) / 2) * image_width, 3)
|
||
y = round(float((y1 + y2) / 2) * image_height, 3)
|
||
if action_type == "left_single" or action_type == "click":
|
||
pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')"
|
||
elif action_type == "left_double":
|
||
pyautogui_code += f"\npyautogui.doubleClick({x}, {y}, button='left')"
|
||
elif action_type == "right_single":
|
||
pyautogui_code += f"\npyautogui.click({x}, {y}, button='right')"
|
||
elif action_type == "hover":
|
||
pyautogui_code += f"\npyautogui.moveTo({x}, {y})"
|
||
|
||
elif action_type in ["finished"]:
|
||
pyautogui_code = "DONE"
|
||
print(f"FINISHED:response_text: {response_text}")
|
||
print(f"FINISHED:response: {str(response)}")
|
||
for failure_indicator in FAILURE_INDICATORS:
|
||
if failure_indicator in response_text:
|
||
pyautogui_code = "FAIL"
|
||
break
|
||
elif action_type in ["wait"]:
|
||
pyautogui_code = "WAIT"
|
||
|
||
elif action_type in ["call_user"]:
|
||
pyautogui_code = "FAIL"
|
||
else:
|
||
pyautogui_code += f"\n# Unrecognized action type: {action_type}"
|
||
|
||
return pyautogui_code
|
||
|
||
def add_box_token(input_string):
|
||
# Step 1: Split the string into individual actions
|
||
if "Action: " in input_string and "start_box=" in input_string:
|
||
suffix = input_string.split("Action: ")[0] + "Action: "
|
||
actions = input_string.split("Action: ")[1:]
|
||
processed_actions = []
|
||
for action in actions:
|
||
action = action.strip()
|
||
# Step 2: Extract coordinates (start_box or end_box) using regex
|
||
coordinates = re.findall(r"(start_box|end_box)='\((\d+),\s*(\d+)\)'", action)
|
||
|
||
updated_action = action # Start with the original action
|
||
for coord_type, x, y in coordinates:
|
||
# Convert x and y to integers
|
||
updated_action = updated_action.replace(f"{coord_type}='({x},{y})'", f"{coord_type}='<|box_start|>({x},{y})<|box_end|>'")
|
||
processed_actions.append(updated_action)
|
||
|
||
# Step 5: Reconstruct the final string
|
||
final_string = suffix + "\n\n".join(processed_actions)
|
||
else:
|
||
final_string = input_string
|
||
# print(f"Input string: {input_string}")
|
||
# print(f"Final string: {final_string}")
|
||
return [{"type": "text", "text": final_string}]
|
||
|
||
def pil_to_base64(image):
|
||
"""Convert PIL Image or bytes to base64 string"""
|
||
if isinstance(image, bytes):
|
||
# If it's already bytes, just encode to base64
|
||
return base64.b64encode(image).decode("utf-8")
|
||
else:
|
||
# If it's a PIL Image, convert it
|
||
buffer = BytesIO()
|
||
image.save(buffer, format="PNG")
|
||
return base64.b64encode(buffer.getvalue()).decode("utf-8") |