Files
sci-gui-agent-benchmark/mm_agents/coact/autogen/agentchat/contrib/multimodal_conversable_agent.py
2025-07-31 10:35:20 +08:00

154 lines
6.2 KiB
Python

# Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors
#
# SPDX-License-Identifier: Apache-2.0
#
# Portions derived from https://github.com/microsoft/autogen are under the MIT License.
# SPDX-License-Identifier: MIT
import copy
from typing import Any, Optional, Union
from ... import OpenAIWrapper
from ...code_utils import content_str
from .. import Agent, ConversableAgent
from ..contrib.img_utils import (
gpt4v_formatter,
message_formatter_pil_to_b64,
)
DEFAULT_LMM_SYS_MSG = """You are a helpful AI assistant."""
DEFAULT_MODEL = "gpt-4-vision-preview"
class MultimodalConversableAgent(ConversableAgent):
DEFAULT_CONFIG = {
"model": DEFAULT_MODEL,
}
def __init__(
self,
name: str,
system_message: Optional[Union[str, list]] = DEFAULT_LMM_SYS_MSG,
is_termination_msg: str = None,
*args,
**kwargs: Any,
):
"""Args:
name (str): agent name.
system_message (str): system message for the OpenAIWrapper inference.
Please override this attribute if you want to reprogram the agent.
**kwargs (dict): Please refer to other kwargs in
[ConversableAgent](/docs/api-reference/autogen/ConversableAgent#conversableagent).
"""
super().__init__(
name,
system_message,
is_termination_msg=is_termination_msg,
*args,
**kwargs,
)
# call the setter to handle special format.
self.update_system_message(system_message)
self._is_termination_msg = (
is_termination_msg
if is_termination_msg is not None
else (lambda x: content_str(x.get("content")) == "TERMINATE")
)
# Override the `generate_oai_reply`
self.replace_reply_func(ConversableAgent.generate_oai_reply, MultimodalConversableAgent.generate_oai_reply)
self.replace_reply_func(
ConversableAgent.a_generate_oai_reply,
MultimodalConversableAgent.a_generate_oai_reply,
)
def update_system_message(self, system_message: Union[dict[str, Any], list[str], str]):
"""Update the system message.
Args:
system_message (str): system message for the OpenAIWrapper inference.
"""
self._oai_system_message[0]["content"] = self._message_to_dict(system_message)["content"]
self._oai_system_message[0]["role"] = "system"
@staticmethod
def _message_to_dict(message: Union[dict[str, Any], list[str], str]) -> dict:
"""Convert a message to a dictionary. This implementation
handles the GPT-4V formatting for easier prompts.
The message can be a string, a dictionary, or a list of dictionaries:
- If it's a string, it will be cast into a list and placed in the 'content' field.
- If it's a list, it will be directly placed in the 'content' field.
- If it's a dictionary, it is already in message dict format. The 'content' field of this dictionary
will be processed using the gpt4v_formatter.
"""
if isinstance(message, str):
return {"content": gpt4v_formatter(message, img_format="pil")}
if isinstance(message, list):
return {"content": message}
if isinstance(message, dict):
assert "content" in message, "The message dict must have a `content` field"
if isinstance(message["content"], str):
message = copy.deepcopy(message)
message["content"] = gpt4v_formatter(message["content"], img_format="pil")
try:
content_str(message["content"])
except (TypeError, ValueError) as e:
print("The `content` field should be compatible with the content_str function!")
raise e
return message
raise ValueError(f"Unsupported message type: {type(message)}")
def generate_oai_reply(
self,
messages: Optional[list[dict[str, Any]]] = None,
sender: Optional[Agent] = None,
config: Optional[OpenAIWrapper] = None,
) -> tuple[bool, Optional[Union[str, dict[str, Any]]]]:
"""Generate a reply using autogen.oai."""
client = self.client if config is None else config
if client is None:
return False, None
if messages is None:
messages = self._oai_messages[sender]
messages_with_b64_img = message_formatter_pil_to_b64(self._oai_system_message + messages)
new_messages = []
for message in messages_with_b64_img:
if 'tool_responses' in message:
for tool_response in message['tool_responses']:
tmp_image = None
tmp_list = []
for ctx in message['content']:
if ctx['type'] == 'image_url':
tmp_image = ctx
tmp_list.append({
'role': 'tool',
'tool_call_id': tool_response['tool_call_id'],
'content': [message['content'][0]]
})
if tmp_image:
tmp_list.append({
'role': 'user',
'content': [
{'type': 'text', 'text': 'I take a screenshot for the current state for you.'},
tmp_image
]
})
new_messages.extend(tmp_list)
else:
new_messages.append(message)
messages_with_b64_img = new_messages.copy()
# TODO: #1143 handle token limit exceeded error
response = client.create(
context=messages[-1].pop("context", None), messages=messages_with_b64_img, agent=self.name
)
# TODO: line 301, line 271 is converting messages to dict. Can be removed after ChatCompletionMessage_to_dict is merged.
extracted_response = client.extract_text_or_completion_object(response)[0]
if not isinstance(extracted_response, str):
extracted_response = extracted_response.model_dump()
return True, extracted_response