Files
sci-gui-agent-benchmark/mm_agents/os_symphony/agents/os_symphony.py
2025-12-23 14:30:44 +08:00

62 lines
2.5 KiB
Python
Executable File

import logging
import platform
from typing import Dict, List, Tuple
from mm_agents.os_symphony.agents.os_aci import OSACI
from mm_agents.os_symphony.agents.searcher_agent import VLMSearcherAgent
from mm_agents.os_symphony.agents.worker import Worker
logger = logging.getLogger("desktopenv.agent")
class OSSymphony:
def __init__(
self,
engine_params_for_orchestrator: Dict,
engine_params_for_memoryer: Dict,
os_aci: OSACI,
platform: str = platform.system().lower(),
client_password: str = "",
max_trajectory_length: int = 8,
enable_reflection: bool = True,
):
"""
Args:
worker_engine_params: Configuration parameters for the worker agent.
grounding_agent: Instance of ACI class for UI interaction
platform: Operating system platform (darwin, linux, windows)
max_trajectory_length: Maximum number of image turns to keep
enable_reflection: Creates a reflection agent to assist the worker agent
"""
self.engine_params_for_orchestrator = engine_params_for_orchestrator
self.engine_params_for_memoryer = engine_params_for_memoryer
self.os_aci: OSACI = os_aci
self.platform =platform
self.client_password = client_password
self.max_trajectory_length = max_trajectory_length
self.enable_reflection = enable_reflection
def reset(self, result_dir) -> None:
"""Reset agent state and initialize components"""
# Reset the search time per task
self.os_aci.result_dir = result_dir
self.executor = Worker(
engine_params_for_orchestrator=self.engine_params_for_orchestrator,
engine_params_for_memoryer=self.engine_params_for_memoryer,
os_aci=self.os_aci,
platform=self.platform,
client_password=self.client_password,
max_trajectory_length=self.max_trajectory_length,
enable_reflection=self.enable_reflection,
)
def predict(self, instruction: str, observation: Dict, is_last_step: bool) -> Tuple[Dict, List[str]]:
# Initialize the three info dictionaries
executor_info, actions = self.executor.generate_next_action(
instruction=instruction, obs=observation, is_last_step=is_last_step
)
# concatenate the three info dictionaries
info = {**{k: v for d in [executor_info or {}] for k, v in d.items()}}
return info, actions