Files
sci-gui-agent-benchmark/mm_agents/os_symphony/core/mllm.py
2025-12-23 14:30:44 +08:00

309 lines
11 KiB
Python
Executable File

import base64
import numpy as np
from mm_agents.os_symphony.core.engine import (
LMMEngineAnthropic,
LMMEngineAzureOpenAI,
LMMEngineHuggingFace,
LMMEngineOpenAI,
LMMEngineOpenRouter,
LMMEngineParasail,
LMMEnginevLLM,
LMMEngineGemini,
)
class LMMAgent:
def __init__(self, engine_params: dict, system_prompt=None, engine=None):
if engine is None:
if engine_params is not None:
engine_type = engine_params.get("engine_type")
if engine_type == "openai":
self.engine = LMMEngineOpenAI(**engine_params)
elif engine_type == "anthropic":
self.engine = LMMEngineAnthropic(**engine_params)
elif engine_type == "azure":
self.engine = LMMEngineAzureOpenAI(**engine_params)
elif engine_type == "vllm":
self.engine = LMMEnginevLLM(**engine_params)
elif engine_type == "huggingface":
self.engine = LMMEngineHuggingFace(**engine_params)
elif engine_type == "gemini":
self.engine = LMMEngineGemini(**engine_params)
elif engine_type == "open_router":
self.engine = LMMEngineOpenRouter(**engine_params)
elif engine_type == "parasail":
self.engine = LMMEngineParasail(**engine_params)
else:
raise ValueError(f"engine_type '{engine_type}' is not supported")
else:
raise ValueError("engine_params must be provided")
else:
self.engine = engine
self.messages = [] # Empty messages
self.agent_name = engine_params.get("agent_name")
if system_prompt:
self.add_system_prompt(system_prompt)
else:
self.add_system_prompt("You are a helpful assistant.")
def encode_image(self, image_content):
# if image_content is a path to an image file, check type of the image_content to verify
if isinstance(image_content, str):
with open(image_content, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
else:
return base64.b64encode(image_content).decode("utf-8")
def reset(
self,
):
self.messages = [
{
"role": "system",
"content": [{"type": "text", "text": self.system_prompt}],
}
]
def add_system_prompt(self, system_prompt):
self.system_prompt = system_prompt
if len(self.messages) > 0:
self.messages[0] = {
"role": "system",
"content": [{"type": "text", "text": self.system_prompt}],
}
else:
self.messages.append(
{
"role": "system",
"content": [{"type": "text", "text": self.system_prompt}],
}
)
def remove_message_at(self, index):
"""Remove a message at a given index"""
if index < len(self.messages):
self.messages.pop(index)
def replace_message_at(
self, index, text_content, image_content=None, image_detail="high"
):
"""Replace a message at a given index"""
if index < len(self.messages):
self.messages[index] = {
"role": self.messages[index]["role"],
"content": [{"type": "text", "text": text_content}],
}
if image_content:
base64_image = self.encode_image(image_content)
self.messages[index]["content"].append(
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{base64_image}",
"detail": image_detail,
},
}
)
def add_message(
self,
text_content,
image_content=None,
role=None,
image_detail="high",
put_text_last=True,
):
"""Add a new message to the list of messages"""
# API-style inference from OpenAI and AzureOpenAI
if isinstance(
self.engine,
(
LMMEngineOpenAI,
LMMEngineAzureOpenAI,
LMMEngineHuggingFace,
LMMEngineGemini,
LMMEngineOpenRouter,
LMMEngineParasail,
),
):
# infer role from previous message
if role != "user":
if self.messages[-1]["role"] == "system":
role = "user"
elif self.messages[-1]["role"] == "user":
role = "assistant"
elif self.messages[-1]["role"] == "assistant":
role = "user"
message = {
"role": role,
"content": [{"type": "text", "text": text_content}],
}
if isinstance(image_content, np.ndarray) or image_content:
# Check if image_content is a list or a single image
if isinstance(image_content, list):
# If image_content is a list of images, loop through each image
for image in image_content:
base64_image = self.encode_image(image)
message["content"].append(
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{base64_image}",
"detail": image_detail,
},
}
)
else:
# If image_content is a single image, handle it directly
base64_image = self.encode_image(image_content)
message["content"].append(
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{base64_image}",
"detail": image_detail,
},
}
)
# Rotate text to be the last message if desired
if put_text_last:
text_content = message["content"].pop(0)
message["content"].append(text_content)
self.messages.append(message)
# For API-style inference from Anthropic
elif isinstance(self.engine, LMMEngineAnthropic):
# infer role from previous message
if role != "user":
if self.messages[-1]["role"] == "system":
role = "user"
elif self.messages[-1]["role"] == "user":
role = "assistant"
elif self.messages[-1]["role"] == "assistant":
role = "user"
message = {
"role": role,
"content": [{"type": "text", "text": text_content}],
}
if image_content:
# Check if image_content is a list or a single image
if isinstance(image_content, list):
# If image_content is a list of images, loop through each image
for image in image_content:
base64_image = self.encode_image(image)
message["content"].append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": base64_image,
},
}
)
else:
# If image_content is a single image, handle it directly
base64_image = self.encode_image(image_content)
message["content"].append(
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": base64_image,
},
}
)
self.messages.append(message)
# Locally hosted vLLM model inference
elif isinstance(self.engine, LMMEnginevLLM):
# infer role from previous message
if role != "user":
if self.messages[-1]["role"] == "system":
role = "user"
elif self.messages[-1]["role"] == "user":
role = "assistant"
elif self.messages[-1]["role"] == "assistant":
role = "user"
message = {
"role": role,
"content": [{"type": "text", "text": text_content}],
}
if image_content:
# Check if image_content is a list or a single image
if isinstance(image_content, list):
# If image_content is a list of images, loop through each image
for image in image_content:
base64_image = self.encode_image(image)
message["content"].append(
{
"type": "image_url",
"image_url": {
"url": f"data:image;base64,{base64_image}"
},
}
)
else:
# If image_content is a single image, handle it directly
base64_image = self.encode_image(image_content)
message["content"].append(
{
"type": "image_url",
"image_url": {"url": f"data:image;base64,{base64_image}"},
}
)
if put_text_last:
text_content = message["content"].pop(0)
message["content"].append(text_content)
self.messages.append(message)
else:
raise ValueError("engine_type is not supported")
def get_response(
self,
user_message=None,
messages=None,
temperature=0.0,
max_new_tokens=32168,
use_thinking=False,
**kwargs,
):
"""Generate the next response based on previous messages"""
if messages is None:
messages = self.messages
if user_message:
messages.append(
{"role": "user", "content": [{"type": "text", "text": user_message}]}
)
# Regular generation
# if use_thinking:
# return self.engine.generate_with_thinking(
# messages,
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# **kwargs,
# )
return self.engine.generate(
messages,
temperature=temperature,
max_new_tokens=max_new_tokens,
**kwargs,
)