449 lines
16 KiB
Python
Executable File
449 lines
16 KiB
Python
Executable File
import json
|
|
import re
|
|
import time
|
|
from io import BytesIO
|
|
from typing import Tuple, Dict, List, Union
|
|
import io
|
|
import os
|
|
from PIL import Image, ImageDraw
|
|
from mm_agents.os_symphony.memory.procedural_memory import PROCEDURAL_MEMORY
|
|
from mm_agents.os_symphony.utils.process_context import get_current_result_dir
|
|
import logging
|
|
|
|
logger = logging.getLogger("desktopenv.agent")
|
|
|
|
|
|
def create_pyautogui_code(agent, code: str, obs: Dict) -> Tuple[str, dict | None]:
|
|
"""
|
|
Attempts to evaluate the code into a pyautogui code snippet with grounded actions using the observation screenshot.
|
|
|
|
Args:
|
|
agent (ACI): The grounding agent to use for evaluation.
|
|
code (str): The code string to evaluate.
|
|
obs (Dict): The current observation containing the screenshot.
|
|
|
|
Returns:
|
|
exec_code (str): The pyautogui code to execute the grounded action.
|
|
coordinate (List): The coordinate of the action, a list such as [x1, y1, x2, y2, x3, y3...]. Because may appear more than one coordinate in one action.
|
|
Modified by Yang.
|
|
Raises:
|
|
Exception: If there is an error in evaluating the code.
|
|
"""
|
|
agent.assign_screenshot(obs) # Necessary for grounding
|
|
response = eval(code)
|
|
if isinstance(response, Tuple):
|
|
return response
|
|
elif isinstance(response, str):
|
|
return response, None
|
|
else:
|
|
return "", None
|
|
|
|
|
|
def draw_coordinates(image_bytes: bytes, coordinates: List[Union[int, float]], save_path: str):
|
|
"""
|
|
Draw coordinates on the given image and save it to a new file.
|
|
|
|
This function receives an image as a byte stream, a list of coordinates in the format [x1, y1, x2, y2, ...],
|
|
and draws a red 'X' at each (x, y) coordinate point. The resulting image is then saved to the specified path.
|
|
|
|
Args:
|
|
- image_bytes (bytes): The raw byte data of the image (e.g., read from a PNG or JPEG file).
|
|
- coordinates (List[Union[int, float]]): A flattened list of coordinates, must contain an even number of elements. For example: [x1, y1, x2, y2].
|
|
- save_path (str): The path where the new image with markings will be saved.
|
|
"""
|
|
try:
|
|
image = Image.open(io.BytesIO(image_bytes))
|
|
image = image.convert("RGB")
|
|
except Exception as e:
|
|
return
|
|
|
|
draw = ImageDraw.Draw(image)
|
|
|
|
cross_size = 15
|
|
cross_color = "red"
|
|
cross_width = 3
|
|
|
|
for i in range(0, len(coordinates) - 1, 2):
|
|
x, y = coordinates[i], coordinates[i+1]
|
|
|
|
line1_start = (x - cross_size, y - cross_size)
|
|
line1_end = (x + cross_size, y + cross_size)
|
|
|
|
line2_start = (x + cross_size, y - cross_size)
|
|
line2_end = (x - cross_size, y + cross_size)
|
|
|
|
draw.line([line1_start, line1_end], fill=cross_color, width=cross_width)
|
|
draw.line([line2_start, line2_end], fill=cross_color, width=cross_width)
|
|
|
|
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
|
image.save(save_path)
|
|
|
|
|
|
def parse_action_from_string(string):
|
|
'''
|
|
Parse all strings following "(next action)", including the phrase "next action" itself. If parsing is not possible, return everything.
|
|
'''
|
|
marker = "(Next Action)"
|
|
|
|
start_index = string.find(marker)
|
|
|
|
if start_index != -1:
|
|
return string[start_index:]
|
|
else:
|
|
return string
|
|
|
|
|
|
def call_llm_safe(
|
|
agent, temperature: float = 0.0, use_thinking: bool = False, **kwargs
|
|
) -> str:
|
|
|
|
try:
|
|
example_result_dir = get_current_result_dir()
|
|
except Exception:
|
|
example_result_dir = "logs/tokens"
|
|
# Retry if fails
|
|
max_retries = 3 # Set the maximum number of retries
|
|
attempt = 0
|
|
response = ""
|
|
while attempt < max_retries:
|
|
try:
|
|
response = agent.get_response(
|
|
temperature=temperature, use_thinking=use_thinking, **kwargs
|
|
)
|
|
assert response is not None, "Response from agent should not be None"
|
|
# print("Response success!")
|
|
break # If successful, break out of the loop
|
|
except Exception as e:
|
|
attempt += 1
|
|
print(f"{agent.engine} Attempt {attempt} failed: {e}")
|
|
if attempt == max_retries:
|
|
print("Max retries reached. Handling failure.")
|
|
time.sleep(1.0)
|
|
# record token cost
|
|
if isinstance(response, tuple):
|
|
response, usage = response
|
|
agent_name = agent.agent_name
|
|
with open(os.path.join(example_result_dir, "token.jsonl"), "a", encoding="utf-8") as f:
|
|
f.write(json.dumps({
|
|
"agent_name": agent_name,
|
|
"completion_tokens": usage.completion_tokens,
|
|
"prompt_tokens": usage.prompt_tokens,
|
|
"total_tokens": usage.total_tokens
|
|
}))
|
|
f.write("\n")
|
|
|
|
return response if response is not None else ""
|
|
|
|
|
|
def call_func_safe(
|
|
func, **kwargs
|
|
) -> str:
|
|
# Retry if fails
|
|
max_retries = 3 # Set the maximum number of retries
|
|
attempt = 0
|
|
response = ""
|
|
while attempt < max_retries:
|
|
try:
|
|
response = func(**kwargs)
|
|
break
|
|
except Exception as e:
|
|
attempt += 1
|
|
print(f"Attempt {attempt} failed: {e}")
|
|
if attempt == max_retries:
|
|
print("Max retries reached. Handling failure.")
|
|
time.sleep(1.0)
|
|
|
|
return response if response is not None else ""
|
|
|
|
|
|
def extract_coords_from_action_dict(action_dict: Dict | None) -> List:
|
|
coords = []
|
|
coords_num = 0
|
|
if action_dict:
|
|
for k, v in action_dict["args"].items():
|
|
if (k == "x" and v) or (k == "y" and v) or (k == "x1" and v) or (k == "x2" and v) or (k == "y1" and v) or (k == "y2" and v):
|
|
coords_num += 1
|
|
if coords_num == 2:
|
|
coords.append(action_dict["args"]["x"])
|
|
coords.append(action_dict["args"]["y"])
|
|
if coords_num == 4:
|
|
coords.append(action_dict["args"]["x1"])
|
|
coords.append(action_dict["args"]["y1"])
|
|
coords.append(action_dict["args"]["x2"])
|
|
coords.append(action_dict["args"]["y2"])
|
|
return coords
|
|
|
|
|
|
def call_llm_formatted(generator, format_checkers, **kwargs):
|
|
"""
|
|
Calls the generator agent's LLM and ensures correct formatting.
|
|
|
|
Args:
|
|
generator (ACI): The generator agent to call.
|
|
obs (Dict): The current observation containing the screenshot.
|
|
format_checkers (Callable): Functions that take the response and return a tuple of (success, feedback).
|
|
**kwargs: Additional keyword arguments for the LLM call.
|
|
|
|
Returns:
|
|
response (str): The formatted response from the generator agent.
|
|
"""
|
|
max_retries = 3 # Set the maximum number of retries
|
|
attempt = 0
|
|
response = ""
|
|
if kwargs.get("messages") is None:
|
|
messages = (
|
|
generator.messages.copy()
|
|
) # Copy messages to avoid modifying the original
|
|
else:
|
|
messages = kwargs["messages"]
|
|
del kwargs["messages"] # Remove messages from kwargs to avoid passing it twice
|
|
while attempt < max_retries:
|
|
response = call_llm_safe(generator, messages=messages, **kwargs)
|
|
# Prepare feedback messages for incorrect formatting
|
|
feedback_msgs = []
|
|
for format_checker in format_checkers:
|
|
success, feedback = format_checker(response)
|
|
if not success:
|
|
feedback_msgs.append(feedback)
|
|
if not feedback_msgs:
|
|
# logger.info(f"Response formatted correctly on attempt {attempt} for {generator.engine.model}")
|
|
break
|
|
logger.error(
|
|
f"Response formatting error on attempt {attempt} for {generator.engine.model}. Response: {response} {', '.join(feedback_msgs)}"
|
|
)
|
|
messages.append(
|
|
{
|
|
"role": "assistant",
|
|
"content": [{"type": "text", "text": response}],
|
|
}
|
|
)
|
|
logger.info(f"Bad response: {response}")
|
|
delimiter = "\n- "
|
|
formatting_feedback = f"- {delimiter.join(feedback_msgs)}"
|
|
messages.append(
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": PROCEDURAL_MEMORY.FORMATTING_FEEDBACK_PROMPT.replace(
|
|
"FORMATTING_FEEDBACK", formatting_feedback
|
|
),
|
|
}
|
|
],
|
|
}
|
|
)
|
|
logger.info("Feedback:\n%s", formatting_feedback)
|
|
|
|
attempt += 1
|
|
if attempt == max_retries:
|
|
logger.error(
|
|
"Max retries reached when formatting response. Handling failure."
|
|
)
|
|
time.sleep(1.0)
|
|
return response
|
|
|
|
|
|
def split_thinking_response(full_response: str) -> Tuple[str, str]:
|
|
try:
|
|
# Extract thoughts section
|
|
thoughts = full_response.split("<thoughts>")[-1].split("</thoughts>")[0].strip()
|
|
|
|
# Extract answer section
|
|
answer = full_response.split("<answer>")[-1].split("</answer>")[0].strip()
|
|
|
|
return answer, thoughts
|
|
except Exception as e:
|
|
return full_response, ""
|
|
|
|
|
|
def parse_code_from_string(input_string):
|
|
"""Parses a string to extract each line of code enclosed in triple backticks (```)
|
|
|
|
Args:
|
|
input_string (str): The input string containing code snippets.
|
|
|
|
Returns:
|
|
str: The last code snippet found in the input string, or an empty string if no code is found.
|
|
"""
|
|
input_string = input_string.strip()
|
|
|
|
# This regular expression will match both ```code``` and ```python code```
|
|
# and capture the `code` part. It uses a non-greedy match for the content inside.
|
|
pattern = r"```(?:\w+\s+)?(.*?)```"
|
|
# print(f'[parse_code_from_string].input_string: {input_string}')
|
|
# Find all non-overlapping matches in the string
|
|
matches = re.findall(pattern, input_string, re.DOTALL)
|
|
if len(matches) == 0:
|
|
# return []
|
|
return ""
|
|
relevant_code = matches[
|
|
-1
|
|
] # We only care about the last match given it is the grounded action
|
|
# print(f'[parse_code_from_string].relevant_code: {relevant_code}')
|
|
return relevant_code
|
|
|
|
|
|
def extract_agent_functions(code):
|
|
"""
|
|
Extracts all agent function names from the given code.
|
|
|
|
Args:
|
|
code (str): The code string to search.
|
|
|
|
Returns:
|
|
list: A list of strings like ['agent.click', 'agent.type'].
|
|
"""
|
|
pattern = r"agent\.\w+"
|
|
|
|
return re.findall(pattern, code)
|
|
|
|
|
|
def compress_image(image_bytes: bytes = None, image: Image = None) -> bytes:
|
|
"""Compresses an image represented as bytes.
|
|
|
|
Compression involves resizing image into half its original size and saving to webp format.
|
|
|
|
Args:
|
|
image_bytes (bytes): The image data to compress.
|
|
|
|
Returns:
|
|
bytes: The compressed image data.
|
|
"""
|
|
if not image:
|
|
image = Image.open(BytesIO(image_bytes))
|
|
output = BytesIO()
|
|
image.save(output, format="WEBP")
|
|
compressed_image_bytes = output.getvalue()
|
|
return compressed_image_bytes
|
|
|
|
import math
|
|
|
|
IMAGE_FACTOR = 28
|
|
MIN_PIXELS = 100 * 28 * 28
|
|
MAX_PIXELS = 16384 * 28 * 28
|
|
MAX_RATIO = 200
|
|
|
|
def round_by_factor(number: int, factor: int) -> int:
|
|
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
|
return round(number / factor) * factor
|
|
|
|
|
|
def ceil_by_factor(number: int, factor: int) -> int:
|
|
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
|
return math.ceil(number / factor) * factor
|
|
|
|
|
|
def floor_by_factor(number: int, factor: int) -> int:
|
|
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
|
return math.floor(number / factor) * factor
|
|
|
|
|
|
def smart_resize(
|
|
height: int,
|
|
width: int,
|
|
factor: int = IMAGE_FACTOR,
|
|
min_pixels: int = MIN_PIXELS,
|
|
max_pixels: int = MAX_PIXELS,
|
|
) -> tuple[int, int]:
|
|
"""
|
|
Rescales the image so that the following conditions are met:
|
|
|
|
1. Both dimensions (height and width) are divisible by 'factor'.
|
|
|
|
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
|
|
|
3. The aspect ratio of the image is maintained as closely as possible.
|
|
"""
|
|
min_pixels = MIN_PIXELS if not min_pixels else min_pixels
|
|
max_pixels = MAX_PIXELS if not max_pixels else max_pixels
|
|
if max(height, width) / min(height, width) > MAX_RATIO:
|
|
raise ValueError(
|
|
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
|
)
|
|
h_bar = max(factor, round_by_factor(height, factor))
|
|
w_bar = max(factor, round_by_factor(width, factor))
|
|
if h_bar * w_bar > max_pixels:
|
|
beta = math.sqrt((height * width) / max_pixels)
|
|
h_bar = floor_by_factor(height / beta, factor)
|
|
w_bar = floor_by_factor(width / beta, factor)
|
|
elif h_bar * w_bar < min_pixels:
|
|
beta = math.sqrt(min_pixels / (height * width))
|
|
h_bar = ceil_by_factor(height * beta, factor)
|
|
w_bar = ceil_by_factor(width * beta, factor)
|
|
return h_bar, w_bar
|
|
|
|
|
|
def enhance_observation(image_data: bytes, coordinates: List, expansion_pixels: int = 400, draw=True) -> Tuple[bytes, int, int, int, int]:
|
|
"""
|
|
According to the given coordinates, draw markers on the screenshot and crop a "focused" area.
|
|
|
|
Returns:
|
|
Tuple[bytes, int, int, int, int]:
|
|
- new_image_data (bytes): Data of the cropped image
|
|
- crop_left (int): X-axis offset
|
|
- crop_top (int): Y-axis offset
|
|
- new_width (int): Width of the cropped image
|
|
- new_height (int): Height of the cropped image
|
|
"""
|
|
image = Image.open(io.BytesIO(image_data)).convert("RGBA")
|
|
draw_ctx = ImageDraw.Draw(image)
|
|
|
|
img_width, img_height = image.size
|
|
|
|
X_MARKER_SIZE = 40
|
|
X_MARKER_WIDTH = 5
|
|
|
|
def _draw_x(draw_context, center_x, center_y, size=X_MARKER_SIZE, color="red", width=X_MARKER_WIDTH):
|
|
half_size = size // 2
|
|
draw_context.line((center_x - half_size, center_y - half_size, center_x + half_size, center_y + half_size), fill=color, width=width)
|
|
draw_context.line((center_x - half_size, center_y + half_size, center_x + half_size, center_y - half_size), fill=color, width=width)
|
|
|
|
crop_left, crop_top, crop_right, crop_bottom = 0, 0, img_width, img_height
|
|
|
|
if len(coordinates) == 2:
|
|
x, y = coordinates[0], coordinates[1]
|
|
if draw:
|
|
_draw_x(draw_ctx, x, y)
|
|
|
|
crop_left = x - expansion_pixels
|
|
crop_top = y - expansion_pixels
|
|
crop_right = x + expansion_pixels
|
|
crop_bottom = y + expansion_pixels
|
|
|
|
elif len(coordinates) >= 4:
|
|
x1, y1 = coordinates[0], coordinates[1]
|
|
x2, y2 = coordinates[2], coordinates[3]
|
|
|
|
if draw:
|
|
_draw_x(draw_ctx, x1, y1, color="red")
|
|
_draw_x(draw_ctx, x2, y2, color="blue")
|
|
draw_ctx.line((x1, y1, x2, y2), fill="green", width=5)
|
|
|
|
box_left = min(x1, x2)
|
|
box_top = min(y1, y2)
|
|
box_right = max(x1, x2)
|
|
box_bottom = max(y1, y2)
|
|
|
|
crop_left = box_left - expansion_pixels
|
|
crop_top = box_top - expansion_pixels
|
|
crop_right = box_right + expansion_pixels
|
|
crop_bottom = box_bottom + expansion_pixels
|
|
|
|
# check boundary
|
|
crop_left = max(0, int(crop_left))
|
|
crop_top = max(0, int(crop_top))
|
|
crop_right = min(img_width, int(crop_right))
|
|
crop_bottom = min(img_height, int(crop_bottom))
|
|
|
|
crop_box = (crop_left, crop_top, crop_right, crop_bottom)
|
|
cropped_image = image.crop(crop_box)
|
|
|
|
new_width, new_height = cropped_image.size
|
|
|
|
buffered = io.BytesIO()
|
|
cropped_image.save(buffered, format="PNG")
|
|
|
|
return buffered.getvalue(), crop_left, crop_top, new_width, new_height
|
|
|