Files
sci-gui-agent-benchmark/annotation/experiments/sleep_testing/calc_errors.py

49 lines
1.6 KiB
Python

import csv
import time
import numpy as np
from tqdm import tqdm
def check_sleep(duration, sleep_function):
start = time.perf_counter()
sleep_function(duration)
end = time.perf_counter()
elapsed = end - start
return abs(elapsed - duration)
def busy_sleep(duration):
end_time = time.perf_counter() + duration
while time.perf_counter() < end_time:
pass
def measure_accuracy(sleep_function, durations, iterations=100):
average_errors = []
for duration in tqdm(durations):
errors = [check_sleep(duration, sleep_function) for _ in range(iterations)]
average_error = np.mean(errors)
average_errors.append(average_error)
return average_errors
durations = np.arange(0.001, 0.101, 0.001) # From 1ms to 100ms in 1ms increments
iterations = 100
sleep_errors = measure_accuracy(time.sleep, durations, iterations)
busy_sleep_errors = measure_accuracy(busy_sleep, durations, iterations)
def save_to_csv(filename, durations, sleep_errors, busy_sleep_errors):
with open(filename, 'w', newline='') as csvfile:
fieldnames = ['duration', 'sleep_error', 'busy_sleep_error']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for duration, sleep_error, busy_sleep_error in zip(durations, sleep_errors, busy_sleep_errors):
writer.writerow({
'duration': duration,
'sleep_error': sleep_error,
'busy_sleep_error': busy_sleep_error
})
print("Data saved to", filename)
save_to_csv('sleep_data.csv', durations * 1000, np.array(sleep_errors) * 1000, np.array(busy_sleep_errors) * 1000)