Files
sci-gui-agent-benchmark/mm_agents/autoglm_v/prompt/procedural_memory.py
Yanxiao Zhao a4f8fe2f00 Add autoglm-os-9b-v (#344)
* update for autoglm-v

* Update run_autoglm.py

---------

Co-authored-by: hanyullai <hanyullai@outlook.com>
2025-09-24 19:43:28 +08:00

195 lines
7.7 KiB
Python

import inspect
import json
import os
import textwrap
current_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
def generate_func(json_data):
# 收集所有类名和它们的函数
class_funcs = {}
no_class_funcs = []
cls_name = ""
for item in json_data:
if item["type"] == "function":
func = item["function"]
func_parts = func["name"].split(".")
if len(func_parts) == 2:
class_name, func_name = func_parts
if class_name not in class_funcs:
class_funcs[class_name] = []
class_funcs[class_name].append(item)
else:
no_class_funcs.append(item)
code = ""
# 生成有类的函数
for class_name, funcs in class_funcs.items():
code += f"class {class_name}:\n"
cls_name = class_name
for item in funcs:
func = item["function"]
func_name = func["name"].split(".")[-1]
description = func["description"]
params = func["parameters"]["properties"]
required = func["parameters"].get("required", [])
# 构建参数列表
param_list = ["cls"]
# 首先添加必需参数
for param_name in required:
param_list.append(f"{param_name}")
# 然后添加可选参数
for param_name in params:
if param_name not in required:
param_list.append(f"{param_name}") # 可选参数默认值设为None
# 构建函数定义
func_def = f" def {func_name}({', '.join(param_list)}):\n"
# 构建文档字符串
docstring = f' """\n {description}\n\n Args:\n'
if len(param_list) == 1: # 只有cls参数
docstring += " None\n"
else:
# 首先记录必需参数
for param_name in required:
param_type = params[param_name]["type"]
param_desc = params[param_name].get("description", "")
docstring += f" {param_name} ({param_type}): {param_desc}\n"
# 然后记录可选参数
for param_name in params:
if param_name not in required:
param_type = params[param_name]["type"]
param_desc = params[param_name].get("description", "")
docstring += f" {param_name} ({param_type}, optional): {param_desc}\n"
docstring += ' """\n'
code += func_def + docstring + "\n"
code += "\n"
# 生成没有类的函数
for item in no_class_funcs:
func = item["function"]
func_name = func["name"]
description = func["description"]
params = func["parameters"]["properties"]
required = func["parameters"].get("required", [])
# 构建参数列表
param_list = []
# 首先添加必需参数
for param_name in required:
param_list.append(f"{param_name}")
# 然后添加可选参数
for param_name in params:
if param_name not in required:
param_list.append(f"{param_name}")
# 构建函数定义
func_def = f"def {func_name}({', '.join(param_list)}):\n"
# 构建文档字符串
docstring = f' """\n {description}\n\n Args:\n'
if not param_list:
docstring += " None\n"
else:
# 首先记录必需参数
for param_name in required:
param_type = params[param_name]["type"]
param_desc = params[param_name].get("description", "")
docstring += f" {param_name} ({param_type}): {param_desc}\n"
# 然后记录可选参数
for param_name in params:
if param_name not in required:
param_type = params[param_name]["type"]
param_desc = params[param_name].get("description", "")
docstring += f" {param_name} ({param_type}, optional): {param_desc}\n"
docstring += ' """\n'
code += func_def + docstring + "\n"
return code.strip(), cls_name
setup_prompt = """You are a GUI operation agent. You will be given a task and your action history, with current observation ({observation_list}). You should help me control the computer, output the best action step by step to accomplish the task.
You should first generate a plan, reflect on the current observation, then generate actions to complete the task in python-style pseudo code using the predefined functions.
* Output Format:
{format_hint}"""
func_def_template = """* Available Functions:
```python
{class_content}
```"""
note_prompt = """* Note:
- Your code should only be wrapped in ```python```.
- Only **ONE-LINE-OF-CODE** at a time.
- Each code block is context independent, and variables from the previous round cannot be used in the next round.
{relative_coordinate_hint}- Return with `Agent.exit(success=True)` immediately after the task is completed.
- The computer's environment is Linux, e.g., Desktop path is '/home/user/Desktop'
- My computer's password is '{client_password}', feel free to use it when you need sudo rights"""
class Prompt:
@staticmethod
def construct_procedural_memory(agent_class, app_name=None, client_password="password", with_image=True, with_atree=False, relative_coordinate=True, glm41v_format=True):
agent_class_content = "Class Agent:"
for attr_name in dir(agent_class):
attr = getattr(agent_class, attr_name)
if callable(attr) and hasattr(attr, "is_agent_action"):
# Use inspect to get the full function signature
signature = inspect.signature(attr)
agent_class_content += f"""
def {attr_name}{signature}:
'''{attr.__doc__}'''
"""
if app_name is not None:
tool_path = os.path.join(current_dir, "tools", "apis", f"{app_name.lower()}.json")
with open(tool_path, "r") as f:
json_data = json.load(f)
tool_class_content, tool_class_name = generate_func(json_data)
agent_class_content += "\n\n{}".format(tool_class_content)
func_def_prompt = func_def_template.format(class_content=agent_class_content.strip())
# --- dynamic observation list ---
obs_items = []
if with_image:
obs_items.append("screenshot")
obs_items.append("current app name")
if with_atree:
obs_items.append("a11y tree (based on AT-SPI library)")
obs_items.append("app info")
obs_items.append("last action result")
observation_list = ", ".join(obs_items)
setup_prompt_formatted = setup_prompt.format(
observation_list=observation_list,
format_hint="<think>\n{**YOUR-PLAN-AND-THINKING**}</think>\n<answer>```python\n{**ONE-LINE-OF-CODE**}\n```</answer>" if glm41v_format else "<think>\n{**YOUR-PLAN-AND-THINKING**}\n</think>\n```python\n{**ONE-LINE-OF-CODE**}\n```"
)
note_prompt_formatted = note_prompt.format(
relative_coordinate_hint="- The coordinate [x, y] should be normalized to 0-1000, which usually should be the center of a specific target element.\n" if relative_coordinate else "",
client_password=client_password
)
return setup_prompt_formatted, func_def_prompt, note_prompt_formatted
if __name__ == "__main__":
from grounding_agent import GroundingAgent
print(Prompt.construct_procedural_memory(GroundingAgent, "vlc"))