Files
sci-gui-agent-benchmark/desktop_env/evaluators/metrics/vllm_eval.py

518 lines
18 KiB
Python

import os
from typing import Optional, List, Dict, Any
from dotenv import load_dotenv
import logging
import base64
import glob
logger = logging.getLogger("desktopenv.vllm_eval")
load_dotenv()
class UnifiedLLM:
def __init__(self, model: str):
if model.startswith("gpt"):
self.provider = "openai"
elif model.startswith("claude"):
self.provider = "anthropic"
elif model.startswith("gemini"):
self.provider = "gemini"
else:
self.provider = "unknown"
self.model = model
self.client = self._init_client()
def _init_client(self):
"""Initialize client"""
if self.provider == "openai":
from openai import OpenAI
return OpenAI(
base_url=os.getenv("OPENAI_BASE_URL"),
api_key=os.getenv("OPENAI_API_KEY")
)
elif self.provider == "anthropic":
from anthropic import Anthropic
return Anthropic(
base_url=os.getenv("ANTHROPIC_BASE_URL"),
api_key=os.getenv("ANTHROPIC_API_KEY")
)
elif self.provider == "gemini":
logger.warning("Using Google Gemini model, make sure your internet connection is working.")
import google.generativeai as genai
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
return genai.GenerativeModel(self.model)
else:
logger.error(f"Unsupported LLM provider for model: {self.model}")
raise ValueError(f"Unsupported LLM provider for model: {self.model}")
def _get_supported_params(self, temperature: float, max_tokens: int, top_p: float) -> Dict[str, Any]:
"""Get supported parameters for each provider"""
base_params = {
"temperature": temperature,
"max_tokens": max_tokens
}
# GPT-5.2 and newer models may not support top_p
if self.provider == "openai":
# Only add top_p for older models
if not self.model.startswith("gpt-5"):
base_params["top_p"] = top_p
elif self.provider == "anthropic":
base_params["top_p"] = top_p
elif self.provider == "gemini":
base_params["top_p"] = top_p
return base_params
def generate(
self,
prompt: str,
temperature: float = 0.7,
max_tokens: int = 16384,
top_p: float = 1.0,
**kwargs
) -> str:
"""
Args:
prompt: Input prompt
temperature: Temperature (0.0-2.0)
max_tokens: Maximum number of tokens
top_p: Top-p sampling (0.0-1.0)
Returns:
Generated text
"""
params = self._get_supported_params(temperature, max_tokens, top_p)
if self.provider == "openai":
try:
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
**params
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"OpenAI API error: {e}")
raise e
elif self.provider == "anthropic":
try:
response = self.client.messages.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
**params
)
return response.content[0].text
except Exception as e:
logger.error(f"Anthropic API error: {e}")
raise e
elif self.provider == "gemini":
try:
import google.generativeai as genai
config = genai.GenerationConfig(
temperature=params["temperature"],
max_output_tokens=params["max_tokens"],
top_p=params.get("top_p", 1.0)
)
response = self.client.generate_content(prompt, generation_config=config)
return response.text
except Exception as e:
logger.error(f"Gemini API error: {e}")
raise e
def generate_with_images(
self,
prompt: str,
images_b64: List[str],
batch_size: int = 3,
temperature: float = 0.7,
max_tokens: int = 16384,
top_p: float = 1.0,
**kwargs
) -> str:
"""
Generate with multiple images by batching
Args:
prompt: Base instruction prompt
images_b64: List of base64 encoded images
batch_size: Number of images per batch
temperature: Temperature (0.0-2.0)
max_tokens: Maximum number of tokens
top_p: Top-p sampling (0.0-1.0)
Returns:
Final generated text
"""
if not images_b64:
logger.warning("No images provided, falling back to text-only generation")
return self.generate(prompt, temperature, max_tokens, top_p, **kwargs)
params = self._get_supported_params(temperature, max_tokens, top_p)
total_batches = (len(images_b64) + batch_size - 1) // batch_size
if self.provider == "openai":
return self._generate_with_images_openai(
prompt, images_b64, batch_size, total_batches, params
)
elif self.provider == "anthropic":
return self._generate_with_images_anthropic(
prompt, images_b64, batch_size, total_batches, params
)
elif self.provider == "gemini":
return self._generate_with_images_gemini(
prompt, images_b64, batch_size, total_batches, params
)
else:
raise ValueError(f"Unsupported provider: {self.provider}")
def _generate_with_images_openai(
self,
prompt: str,
images_b64: List[str],
batch_size: int,
total_batches: int,
params: Dict[str, Any]
) -> str:
"""OpenAI implementation for batched image generation"""
messages = []
for batch_idx in range(total_batches):
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, len(images_b64))
batch_images = images_b64[start_idx:end_idx]
# Build content for this batch
content = []
if batch_idx == 0:
# First batch: include the main instruction
content.append({
"type": "text",
"text": f"""{prompt}
I will send you images in {total_batches} batch(es). Please acknowledge each batch but DO NOT provide your final evaluation until I explicitly say "ALL IMAGES SENT. Please provide your evaluation now."
This is batch {batch_idx + 1}/{total_batches}."""
})
else:
content.append({
"type": "text",
"text": f"This is batch {batch_idx + 1}/{total_batches}. Please acknowledge receipt."
})
# Add images
for img_b64 in batch_images:
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{img_b64}"
}
})
messages.append({"role": "user", "content": content})
# Get acknowledgment (except for last batch)
if batch_idx < total_batches - 1:
try:
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
**params
)
assistant_msg = response.choices[0].message.content
messages.append({"role": "assistant", "content": assistant_msg})
logger.info(f"Batch {batch_idx + 1}/{total_batches} acknowledged")
except Exception as e:
logger.error(f"Error sending batch {batch_idx + 1}: {e}")
raise e
# Send final prompt
messages.append({
"role": "user",
"content": "ALL IMAGES SENT. Please provide your evaluation now."
})
try:
response = self.client.chat.completions.create(
model=self.model,
messages=messages,
**params
)
return response.choices[0].message.content
except Exception as e:
logger.error(f"Error getting final evaluation: {e}")
raise e
def _generate_with_images_anthropic(
self,
prompt: str,
images_b64: List[str],
batch_size: int,
total_batches: int,
params: Dict[str, Any]
) -> str:
"""Anthropic implementation for batched image generation"""
messages = []
for batch_idx in range(total_batches):
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, len(images_b64))
batch_images = images_b64[start_idx:end_idx]
# Build content for this batch
content = []
if batch_idx == 0:
content.append({
"type": "text",
"text": f"""{prompt}
I will send you images in {total_batches} batch(es). Please acknowledge each batch but DO NOT provide your final evaluation until I explicitly say "ALL IMAGES SENT. Please provide your evaluation now."
This is batch {batch_idx + 1}/{total_batches}."""
})
else:
content.append({
"type": "text",
"text": f"This is batch {batch_idx + 1}/{total_batches}. Please acknowledge receipt."
})
# Add images
for img_b64 in batch_images:
content.append({
"type": "image",
"source": {
"type": "base64",
"media_type": "image/png",
"data": img_b64
}
})
messages.append({"role": "user", "content": content})
# Get acknowledgment (except for last batch)
if batch_idx < total_batches - 1:
try:
response = self.client.messages.create(
model=self.model,
messages=messages,
**params
)
assistant_msg = response.content[0].text
messages.append({"role": "assistant", "content": assistant_msg})
logger.info(f"Batch {batch_idx + 1}/{total_batches} acknowledged")
except Exception as e:
logger.error(f"Error sending batch {batch_idx + 1}: {e}")
raise e
# Send final prompt
messages.append({
"role": "user",
"content": "ALL IMAGES SENT. Please provide your evaluation now."
})
try:
response = self.client.messages.create(
model=self.model,
messages=messages,
**params
)
return response.content[0].text
except Exception as e:
logger.error(f"Error getting final evaluation: {e}")
raise e
def _generate_with_images_gemini(
self,
prompt: str,
images_b64: List[str],
batch_size: int,
total_batches: int,
params: Dict[str, Any]
) -> str:
"""Gemini implementation for batched image generation"""
import google.generativeai as genai
from PIL import Image
import io
config = genai.GenerationConfig(
temperature=params["temperature"],
max_output_tokens=params["max_tokens"],
top_p=params.get("top_p", 1.0)
)
chat = self.client.start_chat()
for batch_idx in range(total_batches):
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, len(images_b64))
batch_images = images_b64[start_idx:end_idx]
# Build content for this batch
content_parts = []
if batch_idx == 0:
content_parts.append(f"""{prompt}
I will send you images in {total_batches} batch(es). Please acknowledge each batch but DO NOT provide your final evaluation until I explicitly say "ALL IMAGES SENT. Please provide your evaluation now."
This is batch {batch_idx + 1}/{total_batches}.""")
else:
content_parts.append(f"This is batch {batch_idx + 1}/{total_batches}. Please acknowledge receipt.")
# Add images
for img_b64 in batch_images:
img_data = base64.b64decode(img_b64)
img = Image.open(io.BytesIO(img_data))
content_parts.append(img)
# Get acknowledgment (except for last batch)
if batch_idx < total_batches - 1:
try:
response = chat.send_message(content_parts, generation_config=config)
logger.info(f"Batch {batch_idx + 1}/{total_batches} acknowledged")
except Exception as e:
logger.error(f"Error sending batch {batch_idx + 1}: {e}")
raise e
# Send final prompt
try:
response = chat.send_message(
"ALL IMAGES SENT. Please provide your evaluation now.",
generation_config=config
)
return response.text
except Exception as e:
logger.error(f"Error getting final evaluation: {e}")
raise e
def _load_screenshots_from_dir(result_dir: str) -> List[str]:
"""
Load all step screenshots from result directory and convert to base64
Args:
result_dir: Path to result directory containing step_*.png files
Returns:
List of base64 encoded screenshot strings
"""
screenshots = []
# Find all step screenshot files (e.g., step_1_20240101@120000.png)
pattern = os.path.join(result_dir, "step_*.png")
screenshot_files = sorted(glob.glob(pattern))
if not screenshot_files:
logger.warning(f"No screenshot files found in {result_dir}")
return screenshots
for filepath in screenshot_files:
try:
with open(filepath, "rb") as f:
img_data = f.read()
img_b64 = base64.b64encode(img_data).decode('utf-8')
screenshots.append(img_b64)
except Exception as e:
logger.error(f"Error loading screenshot {filepath}: {e}")
logger.info(f"Loaded {len(screenshots)} screenshots from {result_dir}")
return screenshots
def vllm_eval(result_state, **options) -> float:
"""
Evaluate task completion using vision-language model
Args:
result_state: Current state description
**options: Additional options including:
- result_dir: Path to result directory containing step screenshots (recommended)
- screenshots: List of base64 encoded screenshots (deprecated, use result_dir instead)
- instruction: Task instruction
- eval_model: Model name to use
- batch_size: Number of images per batch (default: 3)
- temperature: Temperature parameter
- max_tokens: Maximum tokens
- top_p: Top-p parameter
Returns:
Score between 0.0 and 1.0
"""
# Try to load screenshots from result_dir if provided
result_dir = options.get("result_dir", None)
screenshots = options.get("screenshots", [])
if result_dir and not screenshots:
screenshots = _load_screenshots_from_dir(result_dir)
logger.info(f"Loaded {len(screenshots)} screenshots from result_dir: {result_dir}")
elif screenshots:
logger.info(f"Using {len(screenshots)} screenshots from options")
instruction = options.get("instruction", "")
eval_model = options.get("eval_model", "gpt-4-vision-preview")
batch_size = options.get("batch_size", 3)
params = {
"temperature": options.get("temperature", 0.7),
"max_tokens": options.get("max_tokens", 16384),
"top_p": options.get("top_p", 1.0)
}
llm = UnifiedLLM(eval_model)
prompt = f"""You are an expert evaluator for desktop environment tasks.
Task Instruction: {instruction}
I will provide you with screenshot(s) showing the current state of the desktop environment. Based on the instruction and screenshots, provide a concise evaluation score from 0.0 to 1.0, where:
- 1.0 means the task is perfectly completed
- 0.0 means the task is not completed at all
- Values in between represent partial completion
Please return your response in the format: "Score: X.X" followed by a brief explanation."""
try:
result = llm.generate_with_images(
prompt=prompt,
images_b64=screenshots,
batch_size=batch_size,
**params
)
# Parse score from result
score = _parse_score(result)
logger.info(f"Evaluation result: {result}")
logger.info(f"Parsed score: {score}")
return score
except Exception as e:
logger.error(f"Error during evaluation: {e}")
return 0.0
def _parse_score(text: str) -> float:
"""Parse score from model response"""
import re
# Look for "Score: X.X" pattern
match = re.search(r'[Ss]core:\s*([0-9]*\.?[0-9]+)', text)
if match:
try:
score = float(match.group(1))
# Clamp to [0.0, 1.0]
return max(0.0, min(1.0, score))
except ValueError:
logger.warning(f"Could not parse score from: {match.group(1)}")
logger.warning(f"No valid score found in response: {text[:200]}")
return 0.0