Files
sci-gui-agent-benchmark/mm_agents/gpt_4v_agent.py
David Chang da306376da ver Jan30th
updated function to get AT on Windows
2024-01-30 20:06:58 +08:00

566 lines
22 KiB
Python

import base64
import json
import os
import re
import uuid
from typing import Dict, List
import backoff
import requests
from openai.error import (
APIConnectionError,
APIError,
RateLimitError,
ServiceUnavailableError,
InvalidRequestError
)
from mm_agents.accessibility_tree_wrap.heuristic_retrieve import find_leaf_nodes, filter_nodes, draw_bounding_boxes
from mm_agents.prompts import SYS_PROMPT_IN_SCREENSHOT_OUT_CODE, SYS_PROMPT_IN_SCREENSHOT_OUT_ACTION, \
SYS_PROMPT_IN_A11Y_OUT_CODE, SYS_PROMPT_IN_A11Y_OUT_ACTION, \
SYS_PROMPT_IN_BOTH_OUT_CODE, SYS_PROMPT_IN_BOTH_OUT_ACTION, \
SYS_PROMPT_IN_SOM_A11Y_OUT_TAG, \
SYS_PROMPT_SEEACT, ACTION_DESCRIPTION_PROMPT_SEEACT, ACTION_GROUNDING_PROMPT_SEEACT
import logging
logger = logging.getLogger("desktopenv.agent")
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def linearize_accessibility_tree(accessibility_tree):
leaf_nodes = find_leaf_nodes(accessibility_tree)
filtered_nodes = filter_nodes(leaf_nodes)
linearized_accessibility_tree = "tag\tname\ttext\tposition\tsize\n"
# Linearize the accessibility tree nodes into a table format
for node in filtered_nodes:
linearized_accessibility_tree += node.tag + "\t"
linearized_accessibility_tree += node.attrib.get('name') + "\t"
if node.text:
linearized_accessibility_tree += (node.text if '"' not in node.text else '"{:}"'.format(node.text.replace('"', '""'))) + "\t"
elif node.get("{uri:deskat:uia.windows.microsoft.org}class").endswith("EditWrapper")\
and node.get("{uri:deskat:value.at-spi.gnome.org}value"):
text: str = node.get("{uri:deskat:value.at-spi.gnome.org}value")
linearized_accessibility_tree += (text if '"' not in text else '"{:}"'.format(text.replace('"', '""'))) + "\t"
else:
linearized_accessibility_tree += '""\t'
linearized_accessibility_tree += node.attrib.get(
'{uri:deskat:component.at-spi.gnome.org}screencoord') + "\t"
linearized_accessibility_tree += node.attrib.get('{uri:deskat:component.at-spi.gnome.org}size') + "\n"
return linearized_accessibility_tree
def tag_screenshot(screenshot, accessibility_tree):
# Creat a tmp file to store the screenshot in random name
uuid_str = str(uuid.uuid4())
os.makedirs("tmp/images", exist_ok=True)
tagged_screenshot_file_path = os.path.join("tmp/images", uuid_str + ".png")
nodes = filter_nodes(find_leaf_nodes(accessibility_tree))
# Make tag screenshot
marks, drew_nodes = draw_bounding_boxes(nodes, screenshot, tagged_screenshot_file_path)
return marks, drew_nodes, tagged_screenshot_file_path
def parse_actions_from_string(input_string):
if input_string.strip() in ['WAIT', 'DONE', 'FAIL']:
return [input_string.strip()]
# Search for a JSON string within the input string
actions = []
matches = re.findall(r'```json\s+(.*?)\s+```', input_string, re.DOTALL)
if matches:
# Assuming there's only one match, parse the JSON string into a dictionary
try:
for match in matches:
action_dict = json.loads(match)
actions.append(action_dict)
return actions
except json.JSONDecodeError as e:
return f"Failed to parse JSON: {e}"
else:
matches = re.findall(r'```\s+(.*?)\s+```', input_string, re.DOTALL)
if matches:
# Assuming there's only one match, parse the JSON string into a dictionary
try:
for match in matches:
action_dict = json.loads(match)
actions.append(action_dict)
return actions
except json.JSONDecodeError as e:
return f"Failed to parse JSON: {e}"
else:
try:
action_dict = json.loads(input_string)
return [action_dict]
except json.JSONDecodeError:
raise ValueError("Invalid response format: " + input_string)
def parse_code_from_string(input_string):
if input_string.strip() in ['WAIT', 'DONE', 'FAIL']:
return [input_string.strip()]
# This regular expression will match both ```code``` and ```python code```
# and capture the `code` part. It uses a non-greedy match for the content inside.
pattern = r"```(?:\w+\s+)?(.*?)```"
# Find all non-overlapping matches in the string
matches = re.findall(pattern, input_string, re.DOTALL)
# The regex above captures the content inside the triple backticks.
# The `re.DOTALL` flag allows the dot `.` to match newline characters as well,
# so the code inside backticks can span multiple lines.
# matches now contains all the captured code snippets
codes = []
for match in matches:
match = match.strip()
commands = ['WAIT', 'DONE', 'FAIL'] # fixme: updates this part when we have more commands
if match in commands:
codes.append(match.strip())
elif match.split('\n')[-1] in commands:
if len(match.split('\n')) > 1:
codes.append("\n".join(match.split('\n')[:-1]))
codes.append(match.split('\n')[-1])
else:
codes.append(match)
return codes
def parse_code_from_som_string(input_string, masks):
# parse the output string by masks
mappings = []
for i, mask in enumerate(masks):
x, y, w, h = mask
mappings.append(("tag#" + str(i + 1), "{}, {}".format(int(x + w // 2), int(y + h // 2))))
# reverse the mappings
for mapping in mappings[::-1]:
input_string = input_string.replace(mapping[0], mapping[1])
actions = parse_code_from_string(input_string)
return actions
class GPT4v_Agent:
def __init__(
self,
api_key,
instruction,
model="gpt-4-vision-preview",
max_tokens=500,
action_space="computer_13",
exp="screenshot_a11y_tree"
# exp can be in ["screenshot", "a11y_tree", "screenshot_a11y_tree", "som", "seeact"]
):
self.instruction = instruction
self.model = model
self.max_tokens = max_tokens
self.action_space = action_space
self.exp = exp
self.max_trajectory_length = 3
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
self.thoughts = []
self.actions = []
self.observations = []
if exp == "screenshot":
if action_space == "computer_13":
self.system_message = SYS_PROMPT_IN_SCREENSHOT_OUT_ACTION
elif action_space == "pyautogui":
self.system_message = SYS_PROMPT_IN_SCREENSHOT_OUT_CODE
else:
raise ValueError("Invalid action space: " + action_space)
elif exp == "a11y_tree":
if action_space == "computer_13":
self.system_message = SYS_PROMPT_IN_A11Y_OUT_ACTION
elif action_space == "pyautogui":
self.system_message = SYS_PROMPT_IN_A11Y_OUT_CODE
else:
raise ValueError("Invalid action space: " + action_space)
elif exp == "both":
if action_space == "computer_13":
self.system_message = SYS_PROMPT_IN_BOTH_OUT_ACTION
elif action_space == "pyautogui":
self.system_message = SYS_PROMPT_IN_BOTH_OUT_CODE
else:
raise ValueError("Invalid action space: " + action_space)
elif exp == "som":
if action_space == "computer_13":
raise ValueError("Invalid action space: " + action_space)
elif action_space == "pyautogui":
self.system_message = SYS_PROMPT_IN_SOM_A11Y_OUT_TAG
else:
raise ValueError("Invalid action space: " + action_space)
elif exp == "seeact":
if action_space == "computer_13":
raise ValueError("Invalid action space: " + action_space)
elif action_space == "pyautogui":
self.system_message = SYS_PROMPT_SEEACT
else:
raise ValueError("Invalid action space: " + action_space)
else:
raise ValueError("Invalid experiment type: " + exp)
self.system_message = self.system_message + "\nYou are asked to complete the following task: {}".format(
self.instruction)
def predict(self, obs: Dict) -> List:
"""
Predict the next action(s) based on the current observation.
"""
# Prepare the payload for the API call
messages = []
masks = None
messages.append({
"role": "system",
"content": [
{
"type": "text",
"text": self.system_message
},
]
})
# Append trajectory
assert len(self.observations) == len(self.actions) and len(self.actions) == len(self.thoughts) \
, "The number of observations and actions should be the same."
if len(self.observations) > self.max_trajectory_length:
_observations = self.observations[-self.max_trajectory_length:]
_actions = self.actions[-self.max_trajectory_length:]
_thoughts = self.thoughts[-self.max_trajectory_length:]
else:
_observations = self.observations
_actions = self.actions
_thoughts = self.thoughts
for previous_obs, previous_action, previous_thought in zip(_observations, _actions, _thoughts):
# {{{1
if self.exp == "both":
_screenshot = previous_obs["screenshot"]
_linearized_accessibility_tree = previous_obs["accessibility_tree"]
logger.debug("LINEAR AT: %s", _linearized_accessibility_tree)
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Given the screenshot and info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
_linearized_accessibility_tree)
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{_screenshot}",
"detail": "high"
}
}
]
})
elif self.exp in ["som", "seeact"]:
_screenshot = previous_obs["screenshot"]
_linearized_accessibility_tree = previous_obs["accessibility_tree"]
logger.debug("LINEAR AT: %s", _linearized_accessibility_tree)
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Given the tagged screenshot and info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
_linearized_accessibility_tree)
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{_screenshot}",
"detail": "high"
}
}
]
})
elif self.exp == "screenshot":
_screenshot = previous_obs["screenshot"]
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Given the screenshot as below. What's the next step that you will do to help with the task?"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{_screenshot}",
"detail": "high"
}
}
]
})
elif self.exp == "a11y_tree":
_linearized_accessibility_tree = previous_obs["accessibility_tree"]
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Given the info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
_linearized_accessibility_tree)
}
]
})
else:
raise ValueError("Invalid experiment type: " + self.exp) # 1}}}
messages.append({
"role": "assistant",
"content": [
{
"type": "text",
"text": previous_thought.strip() if len(previous_thought) > 0 else "No valid action"
},
]
})
# {{{1
if self.exp in ["screenshot", "both"]:
base64_image = encode_image(obs["screenshot"])
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
if self.exp == "both":
self.observations.append({
"screenshot": base64_image,
"accessibility_tree": linearized_accessibility_tree
})
else:
self.observations.append({
"screenshot": base64_image,
"accessibility_tree": None
})
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Given the screenshot as below. What's the next step that you will do to help with the task?"
if self.exp == "screenshot"
else "Given the screenshot and info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
linearized_accessibility_tree)
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "high"
}
}
]
})
elif self.exp == "a11y_tree":
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
self.observations.append({
"screenshot": None,
"accessibility_tree": linearized_accessibility_tree
})
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Given the info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
linearized_accessibility_tree)
}
]
})
elif self.exp == "som":
# Add som to the screenshot
masks, drew_nodes, tagged_screenshot = tag_screenshot(obs["screenshot"], obs["accessibility_tree"])
base64_image = encode_image(tagged_screenshot)
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
self.observations.append({
"screenshot": base64_image,
"accessibility_tree": linearized_accessibility_tree
})
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "Given the tagged screenshot and info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
linearized_accessibility_tree)
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "high"
}
}
]
})
elif self.exp == "seeact":
# Add som to the screenshot
masks, drew_nodes, tagged_screenshot = tag_screenshot(obs["screenshot"], obs["accessibility_tree"])
base64_image = encode_image(tagged_screenshot)
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
self.observations.append({
"screenshot": base64_image,
"accessibility_tree": linearized_accessibility_tree
})
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": ACTION_DESCRIPTION_PROMPT_SEEACT.format(linearized_accessibility_tree)
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "high"
}
}
]
})
else:
raise ValueError("Invalid experiment type: " + self.exp) # 1}}}
with open("messages.json", "w") as f:
f.write(json.dumps(messages, indent=4))
response = self.call_llm({
"model": self.model,
"messages": messages,
"max_tokens": self.max_tokens
})
logger.debug("RESPONSE: %s", response)
if self.exp == "seeact":
messages.append({
"role": "assistant",
"content": [
{
"type": "text",
"text": response
}
]
})
messages.append({
"role": "user",
"content": [
{
"type": "text",
"text": "{}\n\nWhat's the next step that you will do to help with the task?".format(
ACTION_GROUNDING_PROMPT_SEEACT)
}
]
})
response = self.call_llm({
"model": self.model,
"messages": messages,
"max_tokens": self.max_tokens
})
print(response)
try:
actions = self.parse_actions(response, masks)
self.thoughts.append(response)
except Exception as e:
print("Failed to parse action from response", e)
actions = None
self.thoughts.append("")
return actions
@backoff.on_exception(
backoff.expo,
(APIError, RateLimitError, APIConnectionError, ServiceUnavailableError, InvalidRequestError),
max_tries=3
)
def call_llm(self, payload):
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=self.headers,
json=payload
)
if response.status_code != 200:
if response.json()['error']['code'] == "context_length_exceeded":
print("Context length exceeded. Retrying with a smaller context.")
payload["messages"] = payload["messages"][-1:]
retry_response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=self.headers,
json=payload
)
if retry_response.status_code != 200:
print("Failed to call LLM: " + retry_response.text)
return ""
print("Failed to call LLM: " + response.text)
return ""
else:
return response.json()['choices'][0]['message']['content']
def parse_actions(self, response: str, masks=None):
if self.exp in ["screenshot", "a11y_tree", "both"]:
# parse from the response
if self.action_space == "computer_13":
actions = parse_actions_from_string(response)
elif self.action_space == "pyautogui":
actions = parse_code_from_string(response)
else:
raise ValueError("Invalid action space: " + self.action_space)
self.actions.append(actions)
return actions
elif self.exp in ["som", "seeact"]:
# parse from the response
if self.action_space == "computer_13":
raise ValueError("Invalid action space: " + self.action_space)
elif self.action_space == "pyautogui":
actions = parse_code_from_som_string(response, masks)
else:
raise ValueError("Invalid action space: " + self.action_space)
self.actions.append(actions)
return actions