Files
sci-gui-agent-benchmark/mm_agents/coact/autogen/agentchat/contrib/capabilities/vision_capability.py
2025-07-31 10:35:20 +08:00

213 lines
9.6 KiB
Python

# Copyright (c) 2023 - 2025, AG2ai, Inc., AG2ai open-source projects maintainers and core contributors
#
# SPDX-License-Identifier: Apache-2.0
#
# Portions derived from https://github.com/microsoft/autogen are under the MIT License.
# SPDX-License-Identifier: MIT
import copy
from typing import Any, Callable, Optional, Union
from ....code_utils import content_str
from ....oai.client import OpenAIWrapper
from ...assistant_agent import ConversableAgent
from ..img_utils import (
convert_base64_to_data_uri,
get_image_data,
get_pil_image,
gpt4v_formatter,
)
from .agent_capability import AgentCapability
DEFAULT_DESCRIPTION_PROMPT = (
"Write a detailed caption for this image. "
"Pay special attention to any details that might be useful or relevant "
"to the ongoing conversation."
)
class VisionCapability(AgentCapability):
"""We can add vision capability to regular ConversableAgent, even if the agent does not have the multimodal capability,
such as GPT-3.5-turbo agent, Llama, Orca, or Mistral agents. This vision capability will invoke a LMM client to describe
the image (captioning) before sending the information to the agent's actual client.
The vision capability will hook to the ConversableAgent's `process_last_received_message`.
Some technical details:
When the agent (who has the vision capability) received an message, it will:
1. _process_received_message:
a. _append_oai_message
2. generate_reply: if the agent is a MultimodalAgent, it will also use the image tag.
a. hook process_last_received_message (NOTE: this is where the vision capability will be hooked to.)
b. hook process_all_messages_before_reply
3. send:
a. hook process_message_before_send
b. _append_oai_message
"""
def __init__(
self,
lmm_config: dict[str, Any],
description_prompt: Optional[str] = DEFAULT_DESCRIPTION_PROMPT,
custom_caption_func: Callable = None,
) -> None:
"""Initializes a new instance, setting up the configuration for interacting with
a Language Multimodal (LMM) client and specifying optional parameters for image
description and captioning.
Args:
lmm_config (Dict): Configuration for the LMM client, which is used to call
the LMM service for describing the image. This must be a dictionary containing
the necessary configuration parameters. If `lmm_config` is False or an empty dictionary,
it is considered invalid, and initialization will assert.
description_prompt (Optional[str], optional): The prompt to use for generating
descriptions of the image. This parameter allows customization of the
prompt passed to the LMM service. Defaults to `DEFAULT_DESCRIPTION_PROMPT` if not provided.
custom_caption_func (Callable, optional): A callable that, if provided, will be used
to generate captions for images. This allows for custom captioning logic outside
of the standard LMM service interaction.
The callable should take three parameters as input:
1. an image URL (or local location)
2. image_data (a PIL image)
3. lmm_client (to call remote LMM)
and then return a description (as string).
If not provided, captioning will rely on the LMM client configured via `lmm_config`.
If provided, we will not run the default self._get_image_caption method.
Raises:
AssertionError: If neither a valid `lmm_config` nor a `custom_caption_func` is provided,
an AssertionError is raised to indicate that the Vision Capability requires
one of these to be valid for operation.
"""
self._lmm_config = lmm_config
self._description_prompt = description_prompt
self._parent_agent = None
if lmm_config:
self._lmm_client = OpenAIWrapper(**lmm_config)
else:
self._lmm_client = None
self._custom_caption_func = custom_caption_func
assert self._lmm_config or custom_caption_func, (
"Vision Capability requires a valid lmm_config or custom_caption_func."
)
def add_to_agent(self, agent: ConversableAgent) -> None:
self._parent_agent = agent
# Append extra info to the system message.
agent.update_system_message(agent.system_message + "\nYou've been given the ability to interpret images.")
# Register a hook for processing the last message.
agent.register_hook(hookable_method="process_last_received_message", hook=self.process_last_received_message)
def process_last_received_message(self, content: Union[str, list[dict[str, Any]]]) -> str:
"""Processes the last received message content by normalizing and augmenting it
with descriptions of any included images. The function supports input content
as either a string or a list of dictionaries, where each dictionary represents
a content item (e.g., text, image). If the content contains image URLs, it
fetches the image data, generates a caption for each image, and inserts the
caption into the augmented content.
The function aims to transform the content into a format compatible with GPT-4V
multimodal inputs, specifically by formatting strings into PIL-compatible
images if needed and appending text descriptions for images. This allows for
a more accessible presentation of the content, especially in contexts where
images cannot be displayed directly.
Args:
content (Union[str, List[dict[str, Any]]]): The last received message content, which
can be a plain text string or a list of dictionaries representing
different types of content items (e.g., text, image_url).
Returns:
str: The augmented message content
Raises:
AssertionError: If an item in the content list is not a dictionary.
Examples:
Assuming `self._get_image_caption(img_data)` returns
"A beautiful sunset over the mountains" for the image.
- Input as String:
content = "Check out this cool photo!"
Output: "Check out this cool photo!"
(Content is a string without an image, remains unchanged.)
- Input as String, with image location:
content = "What's weather in this cool photo: `<img http://example.com/photo.jpg>`"
Output: "What's weather in this cool photo: `<img http://example.com/photo.jpg>` in case you can not see, the caption of this image is:
A beautiful sunset over the mountains\n"
(Caption added after the image)
- Input as List with Text Only:
content = `[{"type": "text", "text": "Here's an interesting fact."}]`
Output: "Here's an interesting fact."
(No images in the content, it remains unchanged.)
- Input as List with Image URL:
```python
content = [
{"type": "text", "text": "What's weather in this cool photo:"},
{"type": "image_url", "image_url": "http://example.com/photo.jpg"},
]
```
Output: "What's weather in this cool photo: `<img http://example.com/photo.jpg>` in case you can not see, the caption of this image is:
A beautiful sunset over the mountains\n"
(Caption added after the image)
"""
copy.deepcopy(content)
# normalize the content into the gpt-4v format for multimodal
# we want to keep the URL format to keep it concise.
if isinstance(content, str):
content = gpt4v_formatter(content, img_format="url")
aug_content: str = ""
for item in content:
assert isinstance(item, dict)
if item["type"] == "text":
aug_content += item["text"]
elif item["type"] == "image_url":
img_url = item["image_url"]
img_caption = ""
if self._custom_caption_func:
img_caption = self._custom_caption_func(img_url, get_pil_image(img_url), self._lmm_client)
elif self._lmm_client:
img_data = get_image_data(img_url)
img_caption = self._get_image_caption(img_data)
else:
img_caption = ""
aug_content += f"<img {img_url}> in case you can not see, the caption of this image is: {img_caption}\n"
else:
print(f"Warning: the input type should either be `test` or `image_url`. Skip {item['type']} here.")
return aug_content
def _get_image_caption(self, img_data: str) -> str:
"""Args:
img_data (str): base64 encoded image data.
Returns:
str: caption for the given image.
"""
response = self._lmm_client.create(
context=None,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": self._description_prompt},
{
"type": "image_url",
"image_url": convert_base64_to_data_uri(img_data),
},
],
}
],
)
description = response.choices[0].message.content
return content_str(description)