* debug uitars1.0, add uitars1.5 * update pyautogui parser * modify function name * update parser * update prompt * FIX: bug in ui tars
951 lines
37 KiB
Python
951 lines
37 KiB
Python
import ast
|
||
import base64
|
||
import logging
|
||
import math
|
||
import re
|
||
import xml.etree.ElementTree as ET
|
||
from io import BytesIO
|
||
from typing import Dict, List
|
||
|
||
import backoff
|
||
import numpy as np
|
||
from PIL import Image
|
||
from requests.exceptions import SSLError
|
||
import openai
|
||
from openai import OpenAI
|
||
from google.api_core.exceptions import (
|
||
BadRequest,
|
||
InternalServerError,
|
||
InvalidArgument,
|
||
ResourceExhausted,
|
||
)
|
||
|
||
from mm_agents.accessibility_tree_wrap.heuristic_retrieve import (
|
||
filter_nodes,
|
||
)
|
||
from mm_agents.prompts import (
|
||
UITARS_ACTION_SPACE,
|
||
UITARS_CALL_USR_ACTION_SPACE,
|
||
UITARS_USR_PROMPT_NOTHOUGHT,
|
||
UITARS_USR_PROMPT_THOUGHT,
|
||
UITARS_NORMAL_ACTION_SPACE
|
||
)
|
||
|
||
|
||
logger = logging.getLogger("desktopenv.agent")
|
||
|
||
FINISH_WORD = "finished"
|
||
WAIT_WORD = "wait"
|
||
ENV_FAIL_WORD = "error_env"
|
||
CALL_USER = "call_user"
|
||
|
||
IMAGE_FACTOR = 28
|
||
MIN_PIXELS = 100 * 28 * 28
|
||
MAX_PIXELS = 16384 * 28 * 28
|
||
MAX_RATIO = 200
|
||
|
||
pure_text_settings = ["a11y_tree"]
|
||
|
||
attributes_ns_ubuntu = "https://accessibility.windows.example.org/ns/attributes"
|
||
attributes_ns_windows = "https://accessibility.windows.example.org/ns/attributes"
|
||
state_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/state"
|
||
state_ns_windows = "https://accessibility.windows.example.org/ns/state"
|
||
component_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/component"
|
||
component_ns_windows = "https://accessibility.windows.example.org/ns/component"
|
||
value_ns_ubuntu = "https://accessibility.ubuntu.example.org/ns/value"
|
||
value_ns_windows = "https://accessibility.windows.example.org/ns/value"
|
||
class_ns_windows = "https://accessibility.windows.example.org/ns/class"
|
||
# More namespaces defined in OSWorld, please check desktop_env/server/main.py
|
||
|
||
# 定义一个函数来解析每个 action
|
||
def parse_action(action_str):
|
||
try:
|
||
# 解析字符串为 AST 节点
|
||
node = ast.parse(action_str, mode='eval')
|
||
|
||
# 确保节点是一个表达式
|
||
if not isinstance(node, ast.Expression):
|
||
raise ValueError("Not an expression")
|
||
|
||
# 获取表达式的主体
|
||
call = node.body
|
||
|
||
# 确保主体是一个函数调用
|
||
if not isinstance(call, ast.Call):
|
||
raise ValueError("Not a function call")
|
||
|
||
# 获取函数名
|
||
if isinstance(call.func, ast.Name):
|
||
func_name = call.func.id
|
||
elif isinstance(call.func, ast.Attribute):
|
||
func_name = call.func.attr
|
||
else:
|
||
func_name = None
|
||
|
||
# 获取关键字参数
|
||
kwargs = {}
|
||
for kw in call.keywords:
|
||
key = kw.arg
|
||
# 处理不同类型的值,这里假设都是常量
|
||
if isinstance(kw.value, ast.Constant):
|
||
value = kw.value.value
|
||
elif isinstance(kw.value, ast.Str): # 兼容旧版本 Python
|
||
value = kw.value.s
|
||
else:
|
||
value = None
|
||
kwargs[key] = value
|
||
|
||
return {
|
||
'function': func_name,
|
||
'args': kwargs
|
||
}
|
||
|
||
except Exception as e:
|
||
print(f"Failed to parse action '{action_str}': {e}")
|
||
return None
|
||
|
||
def escape_single_quotes(text):
|
||
# 匹配未转义的单引号(不匹配 \\')
|
||
pattern = r"(?<!\\)'"
|
||
return re.sub(pattern, r"\\'", text)
|
||
|
||
def round_by_factor(number: int, factor: int) -> int:
|
||
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
||
return round(number / factor) * factor
|
||
|
||
|
||
def ceil_by_factor(number: int, factor: int) -> int:
|
||
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
||
return math.ceil(number / factor) * factor
|
||
|
||
|
||
def floor_by_factor(number: int, factor: int) -> int:
|
||
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
||
return math.floor(number / factor) * factor
|
||
|
||
def linear_resize(
|
||
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
||
) -> tuple[int, int]:
|
||
if width * height > max_pixels:
|
||
"""
|
||
如果图片超过/低于像素限制,则计算一个缩放因子resize_factor,使图片的像素数缩小到等于或小于max_pixels。这个缩放因子是通过开平方根计算的,确保纵横比保持不变,这样原始的相对坐标可以不经转换直接复用
|
||
"""
|
||
resize_factor = math.sqrt(max_pixels / (width * height))
|
||
width, height = int(width * resize_factor), int(height * resize_factor)
|
||
if width * height < min_pixels:
|
||
resize_factor = math.sqrt(min_pixels / (width * height))
|
||
width, height = math.ceil(width * resize_factor), math.ceil(height * resize_factor)
|
||
|
||
return height, width
|
||
|
||
def smart_resize(
|
||
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
||
) -> tuple[int, int]:
|
||
"""
|
||
Rescales the image so that the following conditions are met:
|
||
|
||
1. Both dimensions (height and width) are divisible by 'factor'.
|
||
|
||
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
||
|
||
3. The aspect ratio of the image is maintained as closely as possible.
|
||
"""
|
||
if max(height, width) / min(height, width) > MAX_RATIO:
|
||
raise ValueError(
|
||
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
|
||
)
|
||
h_bar = max(factor, round_by_factor(height, factor))
|
||
w_bar = max(factor, round_by_factor(width, factor))
|
||
if h_bar * w_bar > max_pixels:
|
||
beta = math.sqrt((height * width) / max_pixels)
|
||
h_bar = floor_by_factor(height / beta, factor)
|
||
w_bar = floor_by_factor(width / beta, factor)
|
||
elif h_bar * w_bar < min_pixels:
|
||
beta = math.sqrt(min_pixels / (height * width))
|
||
h_bar = ceil_by_factor(height * beta, factor)
|
||
w_bar = ceil_by_factor(width * beta, factor)
|
||
return h_bar, w_bar
|
||
|
||
def parse_action_to_structure_output(text, factor, origin_resized_height, origin_resized_width, model_type, max_pixels=16384*28*28, min_pixels=100*28*28):
|
||
text = text.strip()
|
||
if model_type == "qwen25vl":
|
||
smart_resize_height, smart_resize_width = smart_resize(origin_resized_height, origin_resized_width, factor=IMAGE_FACTOR, min_pixels=min_pixels, max_pixels=max_pixels)
|
||
|
||
# 正则表达式匹配 Action 字符串
|
||
if text.startswith("Thought:"):
|
||
thought_pattern = r"Thought: (.+?)(?=\s*Action:|$)"
|
||
thought_hint = "Thought: "
|
||
elif text.startswith("Reflection:"):
|
||
thought_pattern = r"Reflection: (.+?)Action_Summary: (.+?)(?=\s*Action:|$)"
|
||
thought_hint = "Reflection: "
|
||
elif text.startswith("Action_Summary:"):
|
||
thought_pattern = r"Action_Summary: (.+?)(?=\s*Action:|$)"
|
||
thought_hint = "Action_Summary: "
|
||
else:
|
||
thought_pattern = r"Thought: (.+?)(?=\s*Action:|$)"
|
||
thought_hint = "Thought: "
|
||
reflection, thought = None, None
|
||
thought_match = re.search(thought_pattern, text, re.DOTALL)
|
||
if thought_match:
|
||
if len(thought_match.groups()) == 1:
|
||
thought = thought_match.group(1).strip()
|
||
elif len(thought_match.groups()) == 2:
|
||
thought = thought_match.group(2).strip()
|
||
reflection = thought_match.group(1).strip()
|
||
assert "Action:" in text
|
||
action_str = text.split("Action:")[-1]
|
||
|
||
tmp_all_action = action_str.split("\n\n")
|
||
all_action = []
|
||
for action_str in tmp_all_action:
|
||
if "type(content" in action_str:
|
||
# 正则表达式匹配 content 中的字符串并转义单引号
|
||
def escape_quotes(match):
|
||
content = match.group(1) # 获取 content 的值
|
||
return content
|
||
|
||
# 使用正则表达式进行替换
|
||
pattern = r"type\(content='(.*?)'\)" # 匹配 type(content='...')
|
||
content = re.sub(pattern, escape_quotes, action_str)
|
||
|
||
# 处理字符串
|
||
action_str = escape_single_quotes(content)
|
||
action_str = "type(content='" + action_str + "')"
|
||
all_action.append(action_str)
|
||
|
||
parsed_actions = [parse_action(action.replace("\n","\\n").lstrip()) for action in all_action]
|
||
actions = []
|
||
for action_instance, raw_str in zip(parsed_actions, all_action):
|
||
if action_instance == None:
|
||
print(f"Action can't parse: {raw_str}")
|
||
raise ValueError(f"Action can't parse: {raw_str}")
|
||
action_type = action_instance["function"]
|
||
params = action_instance["args"]
|
||
|
||
# import pdb; pdb.set_trace()
|
||
action_inputs = {}
|
||
for param_name, param in params.items():
|
||
if param == "": continue
|
||
param = param.lstrip() # 去掉引号和多余的空格
|
||
# 处理start_box或者end_box参数格式 '<bbox>x1 y1 x2 y2</bbox>'
|
||
action_inputs[param_name.strip()] = param
|
||
|
||
if "start_box" in param_name or "end_box" in param_name:
|
||
ori_box = param
|
||
# Remove parentheses and split the string by commas
|
||
numbers = ori_box.replace("(", "").replace(")", "").split(",")
|
||
|
||
# Convert to float and scale by 1000
|
||
# Qwen2.5vl output absolute coordinates, qwen2vl output relative coordinates
|
||
if model_type == "qwen25vl":
|
||
float_numbers = []
|
||
for num_idx, num in enumerate(numbers):
|
||
num = float(num)
|
||
if (num_idx + 1) % 2 == 0:
|
||
float_numbers.append(float(num/smart_resize_height))
|
||
else:
|
||
float_numbers.append(float(num/smart_resize_width))
|
||
else:
|
||
float_numbers = [float(num) / factor for num in numbers]
|
||
|
||
if len(float_numbers) == 2:
|
||
float_numbers = [float_numbers[0], float_numbers[1], float_numbers[0], float_numbers[1]]
|
||
action_inputs[param_name.strip()] = str(float_numbers)
|
||
|
||
# import pdb; pdb.set_trace()
|
||
actions.append({
|
||
"reflection": reflection,
|
||
"thought": thought,
|
||
"action_type": action_type,
|
||
"action_inputs": action_inputs,
|
||
"text": text
|
||
})
|
||
return actions
|
||
|
||
def parsing_response_to_pyautogui_code(responses, image_height: int, image_width:int, input_swap:bool=True) -> str:
|
||
'''
|
||
将M模型的输出解析为OSWorld中的action,生成pyautogui代码字符串
|
||
参数:
|
||
response: 包含模型输出的字典,结构类似于:
|
||
{
|
||
"action_type": "hotkey",
|
||
"action_inputs": {
|
||
"hotkey": "v ctrl",
|
||
"start_box": None,
|
||
"end_box": None
|
||
}
|
||
}
|
||
返回:
|
||
生成的pyautogui代码字符串
|
||
'''
|
||
|
||
pyautogui_code = f"import pyautogui\nimport time\n"
|
||
if isinstance(responses, dict):
|
||
responses = [responses]
|
||
for response_id, response in enumerate(responses):
|
||
if "observation" in response:
|
||
observation = response["observation"]
|
||
else:
|
||
observation = ""
|
||
|
||
if "thought" in response:
|
||
thought = response["thought"]
|
||
else:
|
||
thought = ""
|
||
|
||
if response_id == 0:
|
||
pyautogui_code += f"'''\nObservation:\n{observation}\n\nThought:\n{thought}\n'''\n"
|
||
else:
|
||
pyautogui_code += f"\ntime.sleep(1)\n"
|
||
|
||
action_dict = response
|
||
action_type = action_dict.get("action_type")
|
||
action_inputs = action_dict.get("action_inputs", {})
|
||
|
||
if action_type == "hotkey":
|
||
# Parsing hotkey action
|
||
if "key" in action_inputs:
|
||
hotkey = action_inputs.get("key", "")
|
||
else:
|
||
hotkey = action_inputs.get("hotkey", "")
|
||
|
||
if hotkey == "arrowleft":
|
||
hotkey = "left"
|
||
|
||
elif hotkey == "arrowright":
|
||
hotkey = "right"
|
||
|
||
elif hotkey == "arrowup":
|
||
hotkey = "up"
|
||
|
||
elif hotkey == "arrowdown":
|
||
hotkey = "down"
|
||
|
||
if hotkey:
|
||
# Handle other hotkeys
|
||
keys = hotkey.split() # Split the keys by space
|
||
convert_keys = []
|
||
for key in keys:
|
||
if key == "space":
|
||
key = ' '
|
||
convert_keys.append(key)
|
||
pyautogui_code += f"\npyautogui.hotkey({', '.join([repr(k) for k in convert_keys])})"
|
||
|
||
elif action_type == "press":
|
||
# Parsing press action
|
||
if "key" in action_inputs:
|
||
key_to_press = action_inputs.get("key", "")
|
||
else:
|
||
key_to_press = action_inputs.get("press", "")
|
||
|
||
if hotkey == "arrowleft":
|
||
hotkey = "left"
|
||
|
||
elif hotkey == "arrowright":
|
||
hotkey = "right"
|
||
|
||
elif hotkey == "arrowup":
|
||
hotkey = "up"
|
||
|
||
elif hotkey == "arrowdown":
|
||
hotkey = "down"
|
||
|
||
elif hotkey == "space":
|
||
hotkey = " "
|
||
|
||
if key_to_press:
|
||
# Simulate pressing a single key
|
||
pyautogui_code += f"\npyautogui.press({repr(key_to_press)})"
|
||
|
||
elif action_type == "keyup":
|
||
key_to_up = action_inputs.get("key", "")
|
||
pyautogui_code += f"\npyautogui.keyUp({repr(key_to_up)})"
|
||
|
||
elif action_type == "keydown":
|
||
key_to_down = action_inputs.get("key", "")
|
||
pyautogui_code += f"\npyautogui.keyDown({repr(key_to_down)})"
|
||
|
||
elif action_type == "type":
|
||
# Parsing typing action using clipboard
|
||
content = action_inputs.get("content", "")
|
||
content = escape_single_quotes(content)
|
||
stripped_content = content
|
||
if content.endswith("\n") or content.endswith("\\n"):
|
||
stripped_content = stripped_content.rstrip("\\n").rstrip("\n")
|
||
if content:
|
||
if input_swap:
|
||
pyautogui_code += f"\nimport pyperclip"
|
||
pyautogui_code += f"\npyperclip.copy('{stripped_content}')"
|
||
pyautogui_code += f"\npyautogui.hotkey('ctrl', 'v')"
|
||
pyautogui_code += f"\ntime.sleep(0.5)\n"
|
||
if content.endswith("\n") or content.endswith("\\n"):
|
||
pyautogui_code += f"\npyautogui.press('enter')"
|
||
else:
|
||
pyautogui_code += f"\npyautogui.write('{stripped_content}', interval=0.1)"
|
||
pyautogui_code += f"\ntime.sleep(0.5)\n"
|
||
if content.endswith("\n") or content.endswith("\\n"):
|
||
pyautogui_code += f"\npyautogui.press('enter')"
|
||
|
||
|
||
elif action_type in ["drag", "select"]:
|
||
# Parsing drag or select action based on start and end_boxes
|
||
start_box = action_inputs.get("start_box")
|
||
end_box = action_inputs.get("end_box")
|
||
if start_box and end_box:
|
||
x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2]
|
||
sx = round(float((x1 + x2) / 2) * image_width, 3)
|
||
sy = round(float((y1 + y2) / 2) * image_height, 3)
|
||
x1, y1, x2, y2 = eval(end_box) # Assuming box is in [x1, y1, x2, y2]
|
||
ex = round(float((x1 + x2) / 2) * image_width, 3)
|
||
ey = round(float((y1 + y2) / 2) * image_height, 3)
|
||
pyautogui_code += (
|
||
f"\npyautogui.moveTo({sx}, {sy})\n"
|
||
f"\npyautogui.dragTo({ex}, {ey}, duration=1.0)\n"
|
||
)
|
||
|
||
elif action_type == "scroll":
|
||
# Parsing scroll action
|
||
start_box = action_inputs.get("start_box")
|
||
if start_box:
|
||
x1, y1, x2, y2 = eval(start_box) # Assuming box is in [x1, y1, x2, y2]
|
||
x = round(float((x1 + x2) / 2) * image_width, 3)
|
||
y = round(float((y1 + y2) / 2) * image_height, 3)
|
||
|
||
# # 先点对应区域,再滚动
|
||
# pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')"
|
||
else:
|
||
x = None
|
||
y = None
|
||
direction = action_inputs.get("direction", "")
|
||
|
||
if x == None:
|
||
if "up" in direction.lower():
|
||
pyautogui_code += f"\npyautogui.scroll(5)"
|
||
elif "down" in direction.lower():
|
||
pyautogui_code += f"\npyautogui.scroll(-5)"
|
||
else:
|
||
if "up" in direction.lower():
|
||
pyautogui_code += f"\npyautogui.scroll(5, x={x}, y={y})"
|
||
elif "down" in direction.lower():
|
||
pyautogui_code += f"\npyautogui.scroll(-5, x={x}, y={y})"
|
||
|
||
elif action_type in ["click", "left_single", "left_double", "right_single", "hover"]:
|
||
# Parsing mouse click actions
|
||
start_box = action_inputs.get("start_box")
|
||
start_box = str(start_box)
|
||
if start_box:
|
||
start_box = eval(start_box)
|
||
if len(start_box) == 4:
|
||
x1, y1, x2, y2 = start_box # Assuming box is in [x1, y1, x2, y2]
|
||
elif len(start_box) == 2:
|
||
x1, y1 = start_box
|
||
x2 = x1
|
||
y2 = y1
|
||
x = round(float((x1 + x2) / 2) * image_width, 3)
|
||
y = round(float((y1 + y2) / 2) * image_height, 3)
|
||
if action_type == "left_single" or action_type == "click":
|
||
pyautogui_code += f"\npyautogui.click({x}, {y}, button='left')"
|
||
elif action_type == "left_double":
|
||
pyautogui_code += f"\npyautogui.doubleClick({x}, {y}, button='left')"
|
||
elif action_type == "right_single":
|
||
pyautogui_code += f"\npyautogui.click({x}, {y}, button='right')"
|
||
elif action_type == "hover":
|
||
pyautogui_code += f"\npyautogui.moveTo({x}, {y})"
|
||
|
||
elif action_type in ["finished"]:
|
||
pyautogui_code = f"DONE"
|
||
|
||
else:
|
||
pyautogui_code += f"\n# Unrecognized action type: {action_type}"
|
||
|
||
return pyautogui_code
|
||
|
||
def add_box_token(input_string):
|
||
# Step 1: Split the string into individual actions
|
||
if "Action: " in input_string and "start_box=" in input_string:
|
||
suffix = input_string.split("Action: ")[0] + "Action: "
|
||
actions = input_string.split("Action: ")[1:]
|
||
processed_actions = []
|
||
for action in actions:
|
||
action = action.strip()
|
||
# Step 2: Extract coordinates (start_box or end_box) using regex
|
||
coordinates = re.findall(r"(start_box|end_box)='\((\d+),\s*(\d+)\)'", action)
|
||
|
||
updated_action = action # Start with the original action
|
||
for coord_type, x, y in coordinates:
|
||
# Convert x and y to integers
|
||
updated_action = updated_action.replace(f"{coord_type}='({x},{y})'", f"{coord_type}='<|box_start|>({x},{y})<|box_end|>'")
|
||
processed_actions.append(updated_action)
|
||
|
||
# Step 5: Reconstruct the final string
|
||
final_string = suffix + "\n\n".join(processed_actions)
|
||
else:
|
||
final_string = input_string
|
||
return final_string
|
||
|
||
def pil_to_base64(image):
|
||
buffer = BytesIO()
|
||
image.save(buffer, format="PNG") # 你可以改成 "JPEG" 等格式
|
||
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
||
|
||
def linearize_accessibility_tree(accessibility_tree, platform="ubuntu"):
|
||
|
||
if platform == "ubuntu":
|
||
_attributes_ns = attributes_ns_ubuntu
|
||
_state_ns = state_ns_ubuntu
|
||
_component_ns = component_ns_ubuntu
|
||
_value_ns = value_ns_ubuntu
|
||
elif platform == "windows":
|
||
_attributes_ns = attributes_ns_windows
|
||
_state_ns = state_ns_windows
|
||
_component_ns = component_ns_windows
|
||
_value_ns = value_ns_windows
|
||
else:
|
||
raise ValueError("Invalid platform, must be 'ubuntu' or 'windows'")
|
||
|
||
filtered_nodes = filter_nodes(ET.fromstring(accessibility_tree), platform)
|
||
linearized_accessibility_tree = [
|
||
"tag\tname\ttext\tclass\tdescription\tposition (top-left x&y)\tsize (w&h)"
|
||
]
|
||
|
||
# Linearize the accessibility tree nodes into a table format
|
||
for node in filtered_nodes:
|
||
if node.text:
|
||
text = (
|
||
node.text
|
||
if '"' not in node.text
|
||
else '"{:}"'.format(node.text.replace('"', '""'))
|
||
)
|
||
|
||
elif node.get("{{{:}}}class".format(class_ns_windows), "").endswith(
|
||
"EditWrapper"
|
||
) and node.get("{{{:}}}value".format(_value_ns)):
|
||
node_text = node.get("{{{:}}}value".format(_value_ns), "")
|
||
text = (
|
||
node_text
|
||
if '"' not in node_text
|
||
else '"{:}"'.format(node_text.replace('"', '""'))
|
||
)
|
||
else:
|
||
text = '""'
|
||
|
||
linearized_accessibility_tree.append(
|
||
"{:}\t{:}\t{:}\t{:}\t{:}\t{:}\t{:}".format(
|
||
node.tag,
|
||
node.get("name", ""),
|
||
text,
|
||
(
|
||
node.get("{{{:}}}class".format(_attributes_ns), "")
|
||
if platform == "ubuntu"
|
||
else node.get("{{{:}}}class".format(class_ns_windows), "")
|
||
),
|
||
node.get("{{{:}}}description".format(_attributes_ns), ""),
|
||
node.get("{{{:}}}screencoord".format(_component_ns), ""),
|
||
node.get("{{{:}}}size".format(_component_ns), ""),
|
||
)
|
||
)
|
||
|
||
return "\n".join(linearized_accessibility_tree)
|
||
|
||
def trim_accessibility_tree(linearized_accessibility_tree, max_tokens):
|
||
# enc = tiktoken.encoding_for_model("gpt-4")
|
||
# tokens = enc.encode(linearized_accessibility_tree)
|
||
# if len(tokens) > max_tokens:
|
||
# linearized_accessibility_tree = enc.decode(tokens[:max_tokens])
|
||
# linearized_accessibility_tree += "[...]\n"
|
||
return linearized_accessibility_tree
|
||
|
||
class UITARSAgent:
|
||
def __init__(
|
||
self,
|
||
platform="ubuntu",
|
||
action_space="pyautogui",
|
||
observation_type="screenshot",
|
||
# observation_type can be in ["screenshot", "a11y_tree", "screenshot_a11y_tree", "som"]
|
||
max_trajectory_length=50,
|
||
a11y_tree_max_tokens=10000,
|
||
model_type="qwen25vl",
|
||
runtime_conf: dict = {
|
||
"infer_mode": "qwen25vl_normal",
|
||
"prompt_style": "qwen25vl_normal",
|
||
"input_swap": True,
|
||
"language": "Chinese",
|
||
"history_n": 5,
|
||
"max_pixels": 16384*28*28,
|
||
"min_pixels": 100*28*28,
|
||
"callusr_tolerance": 3,
|
||
"temperature": 0.0,
|
||
"top_k": -1,
|
||
"top_p": 0.9,
|
||
"max_tokens": 500
|
||
|
||
}
|
||
):
|
||
self.platform = platform
|
||
self.action_space = action_space
|
||
self.observation_type = observation_type
|
||
self.max_trajectory_length = max_trajectory_length
|
||
self.a11y_tree_max_tokens = a11y_tree_max_tokens
|
||
self.model_type = model_type
|
||
self.runtime_conf = runtime_conf
|
||
self.vlm = OpenAI(
|
||
base_url="http://127.0.0.1:8000/v1",
|
||
api_key="empty",
|
||
) # should replace with your UI-TARS server api
|
||
self.temperature = self.runtime_conf["temperature"]
|
||
self.top_k = self.runtime_conf["top_k"]
|
||
self.top_p = self.runtime_conf["top_p"]
|
||
self.max_tokens = self.runtime_conf["max_tokens"]
|
||
self.infer_mode = self.runtime_conf["infer_mode"]
|
||
self.prompt_style = self.runtime_conf["prompt_style"]
|
||
self.input_swap = self.runtime_conf["input_swap"]
|
||
self.language = self.runtime_conf["language"]
|
||
self.max_pixels = self.runtime_conf["max_pixels"]
|
||
self.min_pixels = self.runtime_conf["min_pixels"]
|
||
self.callusr_tolerance = self.runtime_conf["callusr_tolerance"]
|
||
|
||
self.thoughts = []
|
||
self.actions = []
|
||
self.observations = []
|
||
self.history_images = []
|
||
self.history_responses = []
|
||
|
||
self.prompt_action_space = UITARS_ACTION_SPACE
|
||
self.action_parse_res_factor = 1000
|
||
if self.infer_mode == "qwen2vl_user":
|
||
self.prompt_action_space = UITARS_CALL_USR_ACTION_SPACE
|
||
elif self.infer_mode == "qwen25vl_normal":
|
||
self.prompt_action_space = UITARS_NORMAL_ACTION_SPACE
|
||
|
||
self.prompt_template = UITARS_USR_PROMPT_THOUGHT
|
||
|
||
if self.prompt_style == "qwen2vl_user" or self.prompt_style == "qwen25vl_normal":
|
||
self.prompt_template = UITARS_USR_PROMPT_THOUGHT
|
||
|
||
elif self.prompt_style == "qwen2vl_no_thought":
|
||
self.prompt_template = UITARS_USR_PROMPT_NOTHOUGHT
|
||
|
||
|
||
if "history_n" in self.runtime_conf:
|
||
self.history_n = self.runtime_conf["history_n"]
|
||
else:
|
||
self.history_n = 5
|
||
|
||
self.cur_callusr_count = 0
|
||
|
||
def predict(
|
||
self, instruction: str, obs: Dict, last_action_after_obs: Dict = None
|
||
) -> List:
|
||
"""
|
||
Predict the next action(s) based on the current observation.
|
||
"""
|
||
|
||
# Append trajectory
|
||
# print(len(self.observations), len(self.actions), len(self.actions))
|
||
assert len(self.observations) == len(self.actions) and len(self.actions) == len(
|
||
self.thoughts
|
||
), "The number of observations and actions should be the same."
|
||
|
||
if len(self.observations) > self.max_trajectory_length:
|
||
if self.max_trajectory_length == 0:
|
||
_observations = []
|
||
_actions = []
|
||
_thoughts = []
|
||
else:
|
||
_observations = self.observations[-self.max_trajectory_length :]
|
||
_actions = self.actions[-self.max_trajectory_length :]
|
||
_thoughts = self.thoughts[-self.max_trajectory_length :]
|
||
else:
|
||
_observations = self.observations
|
||
_actions = self.actions
|
||
_thoughts = self.thoughts
|
||
|
||
for previous_obs, previous_action, previous_thought in zip(
|
||
_observations, _actions, _thoughts
|
||
):
|
||
# {{{1
|
||
if self.observation_type == "screenshot_a11y_tree":
|
||
_screenshot = previous_obs["screenshot"]
|
||
_linearized_accessibility_tree = previous_obs["accessibility_tree"]
|
||
|
||
else:
|
||
raise ValueError(
|
||
"Invalid observation_type type: " + self.observation_type
|
||
) # 1}}}
|
||
|
||
self.history_images.append(obs["screenshot"])
|
||
|
||
if self.observation_type in ["screenshot", "screenshot_a11y_tree"]:
|
||
base64_image = obs["screenshot"]
|
||
try:
|
||
linearized_accessibility_tree = (
|
||
linearize_accessibility_tree(
|
||
accessibility_tree=obs["accessibility_tree"],
|
||
platform=self.platform,
|
||
)
|
||
if self.observation_type == "screenshot_a11y_tree"
|
||
else None
|
||
)
|
||
except:
|
||
linearized_accessibility_tree = None
|
||
# logger.debug("LINEAR AT: %s", linearized_accessibility_tree)
|
||
|
||
if linearized_accessibility_tree:
|
||
linearized_accessibility_tree = trim_accessibility_tree(
|
||
linearized_accessibility_tree, self.a11y_tree_max_tokens
|
||
)
|
||
|
||
if self.observation_type == "screenshot_a11y_tree":
|
||
self.observations.append(
|
||
{
|
||
"screenshot": base64_image,
|
||
"accessibility_tree": linearized_accessibility_tree,
|
||
}
|
||
)
|
||
else:
|
||
self.observations.append(
|
||
{"screenshot": base64_image, "accessibility_tree": None}
|
||
)
|
||
|
||
else:
|
||
raise ValueError(
|
||
"Invalid observation_type type: " + self.observation_type
|
||
) # 1}}}
|
||
|
||
if self.infer_mode == "qwen2vl_user" or self.infer_mode == "qwen25vl_normal":
|
||
user_prompt = self.prompt_template.format(
|
||
instruction=instruction,
|
||
action_space=self.prompt_action_space,
|
||
language=self.language
|
||
)
|
||
elif self.infer_mode == "qwen2vl_no_thought":
|
||
user_prompt = self.prompt_template.format(
|
||
instruction=instruction
|
||
)
|
||
|
||
if len(self.history_images) > self.history_n:
|
||
self.history_images = self.history_images[-self.history_n:]
|
||
|
||
messages, images = [], []
|
||
if isinstance(self.history_images, bytes):
|
||
self.history_images = [self.history_images]
|
||
elif isinstance(self.history_images, np.ndarray):
|
||
self.history_images = list(self.history_images)
|
||
elif isinstance(self.history_images, list):
|
||
pass
|
||
else:
|
||
raise TypeError(f"Unidentified images type: {type(self.history_images)}")
|
||
|
||
for turn, image in enumerate(self.history_images):
|
||
if len(images) >= self.history_n:
|
||
break
|
||
try:
|
||
image = Image.open(BytesIO(image))
|
||
except Exception as e:
|
||
raise RuntimeError(f"Error opening image: {e}")
|
||
|
||
if image.width * image.height > self.max_pixels:
|
||
"""
|
||
如果图片超过/低于像素限制,则计算一个缩放因子resize_factor,使图片的像素数缩小到等于或小于max_pixels。这个缩放因子是通过开平方根计算的,确保纵横比保持不变,这样原始的相对坐标可以不经转换直接复用
|
||
"""
|
||
resize_factor = math.sqrt(self.max_pixels / (image.width * image.height))
|
||
width, height = int(image.width * resize_factor), int(image.height * resize_factor)
|
||
image = image.resize((width, height))
|
||
if image.width * image.height < self.min_pixels:
|
||
resize_factor = math.sqrt(self.min_pixels / (image.width * image.height))
|
||
width, height = math.ceil(image.width * resize_factor), math.ceil(image.height * resize_factor)
|
||
image = image.resize((width, height))
|
||
|
||
if image.mode != "RGB":
|
||
image = image.convert("RGB")
|
||
|
||
images.append(image)
|
||
|
||
messages = [
|
||
{
|
||
"role": "system",
|
||
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
||
},
|
||
{
|
||
"role": "user",
|
||
"content": [{"type": "text", "text": user_prompt}]
|
||
}
|
||
]
|
||
|
||
image_num = 0
|
||
if len(self.history_responses) > 0:
|
||
for history_idx, history_response in enumerate(self.history_responses):
|
||
# send at most history_n images to the model
|
||
if history_idx + self.history_n > len(self.history_responses):
|
||
|
||
cur_image = images[image_num]
|
||
encoded_string = pil_to_base64(cur_image)
|
||
messages.append({
|
||
"role": "user",
|
||
"content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}}]
|
||
})
|
||
image_num += 1
|
||
|
||
messages.append({
|
||
"role": "assistant",
|
||
"content": [add_box_token(history_response)]
|
||
})
|
||
|
||
cur_image = images[image_num]
|
||
encoded_string = pil_to_base64(cur_image)
|
||
messages.append({
|
||
"role": "user",
|
||
"content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}}]
|
||
})
|
||
image_num += 1
|
||
|
||
else:
|
||
cur_image = images[image_num]
|
||
encoded_string = pil_to_base64(cur_image)
|
||
messages.append({
|
||
"role": "user",
|
||
"content": [{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}}]
|
||
})
|
||
image_num += 1
|
||
|
||
try_times = 3
|
||
origin_resized_height = images[-1].height
|
||
origin_resized_width = images[-1].width
|
||
temperature = self.temperature
|
||
top_k = self.top_k
|
||
while True:
|
||
if try_times <= 0:
|
||
print(f"Reach max retry times to fetch response from client, as error flag.")
|
||
return "client error", ["DONE"], []
|
||
try:
|
||
response = self.vlm.chat.completions.create(
|
||
model="ui-tars",
|
||
messages=messages,
|
||
frequency_penalty=1,
|
||
max_tokens=self.max_tokens,
|
||
temperature=temperature,
|
||
top_p=self.top_p
|
||
)
|
||
# print(response.choices[0].message.content)
|
||
prediction = response.choices[0].message.content.strip()
|
||
except Exception as e:
|
||
print(f"Error when fetching response from client, with response: {response}")
|
||
prediction = None
|
||
try_times -= 1
|
||
|
||
try:
|
||
parsed_responses = parse_action_to_structure_output(
|
||
prediction,
|
||
self.action_parse_res_factor,
|
||
origin_resized_height,
|
||
origin_resized_width,
|
||
self.model_type,
|
||
self.max_pixels,
|
||
self.min_pixels
|
||
)
|
||
break
|
||
except Exception as e:
|
||
print(f"Error when parsing response from client, with response: {response}")
|
||
# If fail to parse the model response, we use sampling parameters to avoid it
|
||
prediction = None
|
||
try_times -= 1
|
||
temperature = 1
|
||
top_k = -1
|
||
|
||
if prediction is None:
|
||
return "client error", ["DONE"]
|
||
|
||
self.history_responses.append(prediction)
|
||
self.thoughts.append(prediction)
|
||
|
||
try:
|
||
parsed_responses = parse_action_to_structure_output(
|
||
prediction,
|
||
self.action_parse_res_factor,
|
||
origin_resized_height,
|
||
origin_resized_width,
|
||
self.model_type,
|
||
self.max_pixels,
|
||
self.min_pixels
|
||
)
|
||
except Exception as e:
|
||
print(f"Parsing action error: {prediction}, with error:\n{e}")
|
||
return f"Parsing action error: {prediction}, with error:\n{e}", ["DONE"]
|
||
|
||
actions = []
|
||
last_image = Image.open(BytesIO(self.history_images[-1]))
|
||
obs_image_height = last_image.height
|
||
obs_image_width = last_image.width
|
||
for parsed_response in parsed_responses:
|
||
if "action_type" in parsed_response:
|
||
|
||
if parsed_response["action_type"] == FINISH_WORD:
|
||
self.actions.append(actions)
|
||
|
||
return prediction, ["DONE"]
|
||
|
||
elif parsed_response["action_type"] == WAIT_WORD:
|
||
self.actions.append(actions)
|
||
return prediction, ["WAIT"]
|
||
|
||
elif parsed_response["action_type"] == ENV_FAIL_WORD:
|
||
self.actions.append(actions)
|
||
return prediction, ["FAIL"]
|
||
|
||
elif parsed_response["action_type"] == CALL_USER:
|
||
if self.callusr_tolerance > self.cur_callusr_count:
|
||
self.actions.append(actions)
|
||
self.cur_callusr_count += 1
|
||
return prediction, ["WAIT"]
|
||
else:
|
||
self.actions.append(actions)
|
||
return prediction, ["FAIL"]
|
||
|
||
pyautogui_code = parsing_response_to_pyautogui_code(
|
||
parsed_response,
|
||
obs_image_height,
|
||
obs_image_width,
|
||
self.input_swap
|
||
)
|
||
actions.append(pyautogui_code)
|
||
|
||
self.actions.append(actions)
|
||
|
||
if len(self.history_responses) >= self.max_trajectory_length:
|
||
# Default to FAIL if exceed max steps
|
||
actions = ["FAIL"]
|
||
|
||
return prediction, actions
|
||
|
||
|
||
@backoff.on_exception(
|
||
backoff.constant,
|
||
# here you should add more model exceptions as you want,
|
||
# but you are forbidden to add "Exception", that is, a common type of exception
|
||
# because we want to catch this kind of Exception in the outside to ensure each example won't exceed the time limit
|
||
(
|
||
# General exceptions
|
||
SSLError,
|
||
# OpenAI exceptions
|
||
openai.RateLimitError,
|
||
openai.BadRequestError,
|
||
openai.InternalServerError,
|
||
# Google exceptions
|
||
InvalidArgument,
|
||
ResourceExhausted,
|
||
InternalServerError,
|
||
BadRequest,
|
||
# Groq exceptions
|
||
# todo: check
|
||
),
|
||
interval=30,
|
||
max_tries=10,
|
||
)
|
||
|
||
def reset(self, runtime_logger):
|
||
self.thoughts = []
|
||
self.actions = []
|
||
self.observations = []
|
||
self.history_images = []
|
||
self.history_responses = []
|