Files
sci-gui-agent-benchmark/mm_agents/gpt_4v_agent.py
2023-11-29 20:21:57 +08:00

146 lines
4.5 KiB
Python

import os
import re
import base64
from desktop_env.envs.desktop_env import Action, MouseClick
import json
import requests
from mm_agents.gpt_4v_prompt import SYS_PROMPT
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def parse_action_from_string(input_string):
# Search for a JSON string within the input string
matches = re.findall(r'```json\s+(.*?)\s+```', input_string, re.DOTALL)
if matches:
# Assuming there's only one match, parse the JSON string into a dictionary
try:
action_dict = json.loads(matches[0])
return action_dict
except json.JSONDecodeError as e:
return f"Failed to parse JSON: {e}"
else:
matches = re.findall(r'```\s+(.*?)\s+```', input_string, re.DOTALL)
if matches:
# Assuming there's only one match, parse the JSON string into a dictionary
try:
action_dict = json.loads(matches[0])
return action_dict
except json.JSONDecodeError as e:
return f"Failed to parse JSON: {e}"
else:
try:
action_dict = json.loads(input_string)
return action_dict
except json.JSONDecodeError as e:
raise ValueError("Invalid response format: " + input_string)
class GPT4v_Agent:
def __init__(self, api_key, instruction, model="gpt-4-vision-preview", max_tokens=300):
self.instruction = instruction
self.model = model
self.max_tokens = max_tokens
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
self.trajectory = [
{
"role": "system",
"content": [
{
"type": "text",
"text": SYS_PROMPT
},
]
}
]
def predict(self, obs):
base64_image = encode_image(obs)
self.trajectory.append({
"role": "user",
"content": [
{
"type": "text",
"text": "What's the next step for instruction '{}'?".format(self.instruction)
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
})
payload = {
"model": self.model,
"messages": self.trajectory,
"max_tokens": self.max_tokens
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=self.headers, json=payload)
action = self.parse_action(response.json()['choices'][0]['message']['content'])
return action
def parse_action(self, response: str):
# response example
"""
```json
{
"action_type": "CLICK",
"click_type": "RIGHT"
}
```
"""
# parse from the response
action = parse_action_from_string(response)
# add action into the trajectory
self.trajectory.append({
"role": "assistant",
"content": [
{
"type": "text",
"text": response
},
]
})
# parse action
parsed_action = {}
action_type = Action[action['action_type']].value
parsed_action["action_type"] = action_type
if action_type == Action.CLICK.value or action_type == Action.MOUSE_DOWN.value or action_type == Action.MOUSE_UP.value:
parsed_action["click_type"] = MouseClick[action['click_type']].value
if action_type == Action.MOUSE_MOVE.value:
parsed_action["x"] = action["x"]
parsed_action["y"] = action["y"]
# fixme: could these two actions be merged??
if action_type == Action.KEY.value:
parsed_action["key"] = [ord(c) for c in action["key"]]
if action_type == Action.TYPE.value:
parsed_action["text"] = [ord(c) for c in action["text"]]
return parsed_action
if __name__ == '__main__':
# OpenAI API Key
api_key = os.environ.get("OPENAI_API_KEY")
agent = GPT4v_Agent(api_key=api_key, instruction="Open Google Sheet")
print(agent.predict(obs="stackoverflow.png"))