246 lines
9.2 KiB
Python
246 lines
9.2 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
import subprocess
|
|
import time
|
|
# import uuid
|
|
# import platform
|
|
from typing import List, Dict
|
|
from typing import Callable, Any, Optional
|
|
import tempfile
|
|
|
|
import gymnasium as gym
|
|
# import requests
|
|
|
|
from desktop_env.controllers.python import PythonController
|
|
from desktop_env.controllers.setup import SetupController
|
|
# from desktop_env.evaluators import eval_funcs
|
|
from desktop_env.evaluators import metrics, getters
|
|
|
|
Metric = Callable[[Any, Any], float]
|
|
Getter = Callable[[gym.Env, Dict[str, Any]], Any]
|
|
|
|
|
|
def _execute_command(command: List[str]) -> None:
|
|
if command[:4] == ["vmrun", "-T", "ws", "start"]:
|
|
p = subprocess.Popen(command)
|
|
p.wait()
|
|
else:
|
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=60, text=True)
|
|
if result.returncode != 0:
|
|
raise Exception("\033[91m" + result.stdout + result.stderr + "\033[0m")
|
|
return result.stdout
|
|
|
|
|
|
class DesktopEnv(gym.Env):
|
|
"""DesktopEnv with OpenAI Gym interface."""
|
|
|
|
def __init__(
|
|
self,
|
|
path_to_vm: str,
|
|
action_space: str = "computer_13",
|
|
task_config: Dict[str, Any] = None,
|
|
tmp_dir: str = "tmp",
|
|
cache_dir: str = "cache"
|
|
):
|
|
"""
|
|
Args:
|
|
path_to_vm (str): path to .vmx file
|
|
action_space (str): "computer_13" | "pyautogui"
|
|
|
|
task_config (Dict[str, Any]): manages task configs integratedly,
|
|
including
|
|
* base snapshot
|
|
* task id (uuid)
|
|
* instruction
|
|
* setup config
|
|
* evaluator config
|
|
|
|
tmp_dir (str): temporary directory to store trajectory stuffs like
|
|
the extracted screenshots
|
|
cache_dir (str): cache directory to cache task-related stuffs like
|
|
reference file for evaluation
|
|
"""
|
|
|
|
# Initialize environment variables
|
|
self.path_to_vm = os.path.abspath(os.path.expandvars(os.path.expanduser(path_to_vm)))
|
|
self.tmp_dir_base: str = tmp_dir
|
|
self.cache_dir_base: str = cache_dir
|
|
|
|
# Initialize emulator and controller
|
|
print("Initializing...")
|
|
self._start_emulator()
|
|
self.host = f"http://{self._get_vm_ip()}:5000"
|
|
self.controller = PythonController(http_server=self.host)
|
|
self.setup_controller = SetupController(http_server=self.host)
|
|
|
|
# mode: human or machine
|
|
assert action_space in ["computer_13", "pyautogui"]
|
|
self.action_space = action_space
|
|
# todo: define the action space and the observation space as gym did, or extend theirs
|
|
|
|
# task-aware stuffs
|
|
self.snapshot_path = task_config["snapshot"] # todo: handling the logic of snapshot directory
|
|
self.task_id: str = task_config["id"]
|
|
self.cache_dir: str = os.path.join(self.cache_dir_base, self.task_id)
|
|
os.makedirs(self.cache_dir, exist_ok=True)
|
|
self.instruction = task_config["instruction"]
|
|
self.config = task_config["config"]
|
|
|
|
self.evaluator = task_config["evaluator"]
|
|
self.metric: Metric = getattr(metrics, self.evaluator["func"])
|
|
self.result_getter: Getter = getattr(getters, "get_{:}".format(self.evaluator["result"]["type"]))
|
|
self.expected_getter: Getter = getattr(getters, "get_{:}".format(self.evaluator["expected"]["type"]))
|
|
|
|
# episodic stuffs, like tmp dir and counters
|
|
self.tmp_dir: str = self.tmp_dir_base # just an init value, updated during reset
|
|
self._traj_no: int = -1
|
|
self._step_no: int = 0
|
|
|
|
def _start_emulator(self):
|
|
while True:
|
|
try:
|
|
output = subprocess.check_output("vmrun -T ws list", shell=True, stderr=subprocess.STDOUT)
|
|
output = output.decode()
|
|
output: List[str] = output.splitlines()
|
|
# if self.path_to_vm.lstrip("~/") in output:
|
|
if self.path_to_vm in output:
|
|
print("VM is running.")
|
|
break
|
|
else:
|
|
print("Starting VM...")
|
|
_execute_command(["vmrun", "-T", "ws", "start", self.path_to_vm])
|
|
time.sleep(3)
|
|
except subprocess.CalledProcessError as e:
|
|
print(f"Error executing command: {e.output.decode().strip()}")
|
|
|
|
def _get_vm_ip(self):
|
|
max_retries = 10
|
|
print("Getting IP Address...")
|
|
for _ in range(max_retries):
|
|
try:
|
|
output = _execute_command(["vmrun", "-T", "ws", "getGuestIPAddress", self.path_to_vm]).strip()
|
|
print(f"IP address: {output}")
|
|
return output
|
|
except:
|
|
time.sleep(5)
|
|
print("Retrying...")
|
|
raise Exception("Failed to get VM IP address!")
|
|
|
|
def _save_state(self):
|
|
_execute_command(["vmrun", "-T", "ws" "snapshot", self.path_to_vm, self.snapshot_path])
|
|
|
|
def _get_screenshot(self):
|
|
# random_uuid = str(uuid.uuid4())
|
|
# os.makedirs(os.path.join("tmp", random_uuid), exist_ok=True)
|
|
# image_path = os.path.join("tmp", random_uuid, "screenshot.png")
|
|
image_path: str = os.path.join(self.tmp_dir, "screenshots", "{:d}.png".format(self._step_no))
|
|
|
|
# Get the screenshot and save to the image_path
|
|
screenshot = self.controller.get_screenshot()
|
|
with open(image_path, "wb") as f:
|
|
f.write(screenshot)
|
|
|
|
return image_path
|
|
|
|
def _get_obs(self):
|
|
screenshot_image_path = self._get_screenshot()
|
|
return screenshot_image_path
|
|
|
|
def reset(self, task_config: Optional[Dict[str, Any]] = None, seed=None, options=None):
|
|
print("Resetting environment...")
|
|
|
|
print("Switching task...")
|
|
if task_config is not None:
|
|
self.snapshot_path = task_config["snapshot"]
|
|
self.task_id = task_config["id"]
|
|
self.cache_dir = os.path.join(self.cache_dir_base, self.task_id)
|
|
os.makedirs(self.cache_dir, exist_ok=True)
|
|
self.instruction = task_config["instruction"]
|
|
self.config = task_config["config"]
|
|
|
|
self.evaluator = task_config["evaluator"]
|
|
self.metric: Metric = getattr(metrics, self.evaluator["func"])
|
|
self.result_getter: Getter = getattr(getters, "get_{:}".format(self.evaluator["result"]["type"]))
|
|
self.expected_getter: Getter = getattr(getters, "get_{:}".format(self.evaluator["expected"]["type"]))
|
|
|
|
print("Setting counters...")
|
|
self._traj_no += 1
|
|
self._step_no = 0
|
|
|
|
print("Setup new temp dir...")
|
|
self.tmp_dir = tempfile.mkdtemp(
|
|
prefix="{:d}.{:}.".format(self._traj_no, self.task_id),
|
|
dir=self.tmp_dir_base
|
|
)
|
|
os.makedirs(os.path.join(self.tmp_dir, "screenshots"))
|
|
|
|
print("Reverting to snapshot to {}...".format(self.snapshot_path))
|
|
_execute_command(["vmrun", "-T", "ws", "revertToSnapshot", self.path_to_vm, self.snapshot_path])
|
|
time.sleep(5)
|
|
|
|
print("Starting emulator...")
|
|
self._start_emulator()
|
|
print("Emulator started.")
|
|
|
|
print("Setting up environment...")
|
|
self.setup_controller.setup(self.config)
|
|
|
|
time.sleep(5)
|
|
print("Environment setup complete.")
|
|
|
|
observation = self._get_obs()
|
|
return observation
|
|
|
|
def step(self, action, pause=0.5):
|
|
self._step_no += 1
|
|
|
|
# fixme: add reminding logic here, decide if the action is valid for the current action_space
|
|
if self.action_space == "computer_13":
|
|
# the set of all possible actions defined in the action representation
|
|
self.controller.execute_action(action)
|
|
elif self.action_space == "pyautogui":
|
|
# the set of all possible python commands insides `pyautogui`
|
|
self.controller.execute_python_command(action)
|
|
|
|
# todo: maybe for the better here we need to add a logic to wait until the rendering is done
|
|
time.sleep(pause)
|
|
observation = {
|
|
"screenshot": self._get_obs(),
|
|
"instruction": self.instruction
|
|
}
|
|
reward = 0 # todo: Define reward calculation for each example
|
|
done = False # todo: Define episode termination condition for each example
|
|
info = {}
|
|
return observation, reward, done, info
|
|
|
|
def evaluate(self):
|
|
"""
|
|
Evaluate whether the task is successfully completed.
|
|
"""
|
|
|
|
# todo: make this more flexible by refactoring
|
|
# eval_func = eval_funcs[self.evaluator["func"]]
|
|
# eval_func_vars = {}
|
|
#
|
|
# for var_name, file_info in self.evaluator["paths"].items():
|
|
# path = copy_file_to_local(file_info)
|
|
# eval_func_vars[var_name] = path
|
|
#
|
|
# return eval_func(**eval_func_vars)
|
|
|
|
result = self.result_getter(self, self.evaluator["result"])
|
|
expected = self.expected_getter(self, self.evaluator["expected"])
|
|
metric: float = self.metric(result, expected)
|
|
|
|
return metric
|
|
|
|
def render(self, mode='rgb_array'):
|
|
if mode == 'rgb_array':
|
|
return self._get_obs()
|
|
else:
|
|
raise ValueError('Unsupported render mode: {}'.format(mode))
|
|
|
|
def close(self):
|
|
_execute_command(["vmrun", "stop", self.path_to_vm])
|