Initial commit
This commit is contained in:
459
verl/single_controller/ray/base.py
Normal file
459
verl/single_controller/ray/base.py
Normal file
@@ -0,0 +1,459 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import time
|
||||
from typing import Dict, List, Any, Tuple
|
||||
|
||||
import ray
|
||||
from ray.util import list_named_actors
|
||||
from ray.util.placement_group import placement_group, PlacementGroup
|
||||
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy, NodeAffinitySchedulingStrategy
|
||||
from ray.experimental.state.api import get_actor
|
||||
|
||||
from verl.single_controller.base import WorkerGroup, ResourcePool, ClassWithInitArgs, Worker
|
||||
|
||||
__all__ = ['Worker']
|
||||
|
||||
|
||||
def get_random_string(length: int) -> str:
|
||||
import random
|
||||
import string
|
||||
letters_digits = string.ascii_letters + string.digits
|
||||
return ''.join(random.choice(letters_digits) for _ in range(length))
|
||||
|
||||
|
||||
def func_generator(self, method_name, dispatch_fn, collect_fn, execute_fn, blocking):
|
||||
|
||||
def func(*args, **kwargs):
|
||||
args, kwargs = dispatch_fn(self, *args, **kwargs)
|
||||
output = execute_fn(method_name, *args, **kwargs)
|
||||
if blocking:
|
||||
output = ray.get(output)
|
||||
output = collect_fn(self, output)
|
||||
return output
|
||||
|
||||
return func
|
||||
|
||||
|
||||
class RayResourcePool(ResourcePool):
|
||||
|
||||
def __init__(self,
|
||||
process_on_nodes: List[int] = None,
|
||||
use_gpu: bool = True,
|
||||
name_prefix: str = "",
|
||||
max_colocate_count: int = 5,
|
||||
detached=False) -> None:
|
||||
super().__init__(process_on_nodes, max_colocate_count)
|
||||
self.use_gpu = use_gpu
|
||||
# print(f"in RayProcessDispatchConfiguration: name_prefix = {name_prefix}")
|
||||
self.name_prefix = name_prefix
|
||||
self.pgs = None
|
||||
self.detached = detached
|
||||
|
||||
def get_placement_groups(self, strategy="STRICT_PACK", name=None):
|
||||
if self.pgs is not None:
|
||||
return self.pgs
|
||||
|
||||
pg_name_prefix = name if name else \
|
||||
f"{self.name_prefix}verl_group_{'_'.join([str(count) for count in self._store])}:"
|
||||
# print(f"pg_name_prefix = {pg_name_prefix}")
|
||||
pg_scheme = [[{
|
||||
"CPU": self.max_collocate_count,
|
||||
"GPU": 1
|
||||
} if self.use_gpu else {
|
||||
"CPU": self.max_collocate_count
|
||||
} for _ in range(process_count)] for process_count in self._store]
|
||||
|
||||
lifetime = 'detached' if self.detached else None
|
||||
|
||||
pgs = [
|
||||
placement_group(bundles=bundles, strategy=strategy, name=pg_name_prefix + str(idx), lifetime=lifetime)
|
||||
for idx, bundles in enumerate(pg_scheme)
|
||||
]
|
||||
|
||||
ray.get([pg.ready() for pg in pgs])
|
||||
|
||||
self.pgs = pgs
|
||||
return pgs
|
||||
|
||||
|
||||
def extract_pg_from_exist(resource_pools: Dict[str, RayResourcePool], src_role_names: List[str],
|
||||
resource_pool: RayResourcePool) -> List:
|
||||
|
||||
src_pgs = [
|
||||
pg for role_name, resource_pool in resource_pools.items() for pg in resource_pool.get_placement_groups()
|
||||
if role_name in src_role_names
|
||||
]
|
||||
|
||||
sorted_src_pgs = sorted(src_pgs, key=lambda pg: pg.bundle_count, reverse=True)
|
||||
sorted_process_on_nodes = sorted([(val, idx) for idx, val in enumerate(resource_pool.store)], reverse=True)
|
||||
|
||||
unsorted_pgs: List[Tuple[int, PlacementGroup]] = []
|
||||
searching_idx = 0
|
||||
for request_process, original_idx in sorted_process_on_nodes:
|
||||
assert searching_idx < len(sorted_src_pgs), f"no enough nodes for request: searching {searching_idx} th node"
|
||||
assert request_process <= sorted_src_pgs[searching_idx].bundle_count, \
|
||||
f"requesting {request_process} processes, bundle count cannot satisfy"
|
||||
unsorted_pgs.append((original_idx, sorted_src_pgs[searching_idx]))
|
||||
searching_idx += 1
|
||||
|
||||
return [pg for _, pg in sorted(unsorted_pgs)]
|
||||
|
||||
|
||||
def merge_resource_pool(rp1: RayResourcePool, rp2: RayResourcePool) -> RayResourcePool:
|
||||
assert rp1.use_gpu == rp2.use_gpu, 'Both RayResourcePool must either use_gpu or not'
|
||||
assert rp1.max_collocate_count == rp2.max_collocate_count, 'Both RayResourcePool must has the same max_collocate_count'
|
||||
assert rp1.n_gpus_per_node == rp2.n_gpus_per_node, 'Both RayResourcePool must has the same n_gpus_per_node'
|
||||
assert rp1.detached == rp2.detached, 'Detached ResourcePool cannot be merged with non-detached ResourcePool'
|
||||
|
||||
new_store = rp1.store + rp2.store
|
||||
|
||||
merged = RayResourcePool(new_store, rp1.use_gpu, f"{rp1.name_prefix}_{rp2.name_prefix}")
|
||||
merged.pgs = rp1.get_placement_groups() + rp2.get_placement_groups()
|
||||
|
||||
return merged
|
||||
|
||||
|
||||
class RayClassWithInitArgs(ClassWithInitArgs):
|
||||
|
||||
def __init__(self, cls, *args, **kwargs) -> None:
|
||||
# self._options = kwargs.pop('options', dict())
|
||||
super().__init__(cls, *args, **kwargs)
|
||||
self._options = {}
|
||||
self._additional_resource = {}
|
||||
|
||||
def set_additional_resource(self, additional_resource):
|
||||
self._additional_resource = additional_resource
|
||||
|
||||
def update_options(self, options: Dict):
|
||||
self._options.update(options)
|
||||
|
||||
def __call__(self,
|
||||
placement_group,
|
||||
placement_group_bundle_idx,
|
||||
use_gpu: bool = True,
|
||||
num_gpus=1,
|
||||
sharing_with=None) -> Any:
|
||||
if sharing_with is not None:
|
||||
target_node_id = ray.get(sharing_with.get_node_id.remote())
|
||||
cuda_visible_devices = ray.get(sharing_with.get_cuda_visible_devices.remote())
|
||||
options = {"scheduling_strategy": NodeAffinitySchedulingStrategy(node_id=target_node_id, soft=False)}
|
||||
return self.cls.options(**options).remote(*self.args,
|
||||
cuda_visible_devices=cuda_visible_devices,
|
||||
**self.kwargs)
|
||||
|
||||
options = {
|
||||
"scheduling_strategy":
|
||||
PlacementGroupSchedulingStrategy(placement_group=placement_group,
|
||||
placement_group_bundle_index=placement_group_bundle_idx)
|
||||
}
|
||||
options.update(self._options)
|
||||
|
||||
if use_gpu:
|
||||
options["num_gpus"] = num_gpus
|
||||
|
||||
if len(self._additional_resource) > 1:
|
||||
for k, v in self._additional_resource.items():
|
||||
options[k] = v
|
||||
|
||||
# print("cls:", self.cls)
|
||||
# print("args: ", self.args)
|
||||
# print("kwargs: ", self.kwargs)
|
||||
return self.cls.options(**options).remote(*self.args, **self.kwargs)
|
||||
|
||||
|
||||
class RayWorkerGroup(WorkerGroup):
|
||||
|
||||
def __init__(self,
|
||||
resource_pool: RayResourcePool = None,
|
||||
ray_cls_with_init: RayClassWithInitArgs = None,
|
||||
bin_pack: bool = True,
|
||||
name_prefix: str = None,
|
||||
detached=False,
|
||||
worker_names=None,
|
||||
**kwargs) -> None:
|
||||
super().__init__(resource_pool=resource_pool, **kwargs)
|
||||
self.ray_cls_with_init = ray_cls_with_init
|
||||
self.name_prefix = get_random_string(length=6) if name_prefix is None else name_prefix
|
||||
|
||||
if worker_names is not None:
|
||||
assert self._is_init_with_detached_workers
|
||||
self._worker_names = worker_names
|
||||
|
||||
if self._is_init_with_detached_workers:
|
||||
self._init_with_detached_workers(worker_names=worker_names)
|
||||
else:
|
||||
self._init_with_resource_pool(resource_pool=resource_pool,
|
||||
ray_cls_with_init=ray_cls_with_init,
|
||||
bin_pack=bin_pack,
|
||||
detached=detached)
|
||||
|
||||
if ray_cls_with_init is not None:
|
||||
self._bind_worker_method(self.ray_cls_with_init.cls, func_generator)
|
||||
|
||||
def _is_worker_alive(self, worker: ray.actor.ActorHandle):
|
||||
worker_state_dict = get_actor(worker._actor_id.hex())
|
||||
return worker_state_dict.get("state", "undefined") == "ALIVE" if worker_state_dict is not None else False
|
||||
|
||||
def _init_with_detached_workers(self, worker_names):
|
||||
workers = [ray.get_actor(name=name) for name in worker_names]
|
||||
self._workers = workers
|
||||
self._world_size = len(worker_names)
|
||||
|
||||
def _init_with_resource_pool(self, resource_pool, ray_cls_with_init, bin_pack, detached):
|
||||
use_gpu = resource_pool.use_gpu
|
||||
|
||||
strategy = "PACK"
|
||||
if bin_pack:
|
||||
strategy = "STRICT_PACK"
|
||||
pgs = resource_pool.get_placement_groups(strategy=strategy)
|
||||
world_size = resource_pool.world_size
|
||||
self._world_size = world_size
|
||||
# cia.add_kwarg("_world_size", world_size)
|
||||
num_gpus = 1 / resource_pool.max_collocate_count
|
||||
|
||||
rank = -1
|
||||
for pg_idx, local_world_size in enumerate(resource_pool.store):
|
||||
pg = pgs[pg_idx]
|
||||
assert local_world_size <= pg.bundle_count, \
|
||||
f"when generating for {self.name_prefix}, for the "
|
||||
for local_rank in range(local_world_size):
|
||||
rank += 1
|
||||
|
||||
# we pass in environment variable at option so that Worker can use environment variable to set
|
||||
env_vars = {
|
||||
'WORLD_SIZE': str(world_size),
|
||||
'RANK': str(rank),
|
||||
'WG_PREFIX': self.name_prefix,
|
||||
'WG_BACKEND': 'ray',
|
||||
'RAY_LOCAL_WORLD_SIZE': str(local_world_size),
|
||||
'RAY_LOCAL_RANK': str(local_rank),
|
||||
}
|
||||
if rank != 0:
|
||||
env_vars['MASTER_ADDR'] = self._master_addr
|
||||
env_vars['MASTER_PORT'] = self._master_port
|
||||
|
||||
import re
|
||||
cia_name = type(ray_cls_with_init.cls).__name__
|
||||
match = re.search(r"ActorClass\(([^)]+)\)", cia_name) # ray.remote(Obj) -> "ActorClass(Obj)"
|
||||
cia_name = match.group(1) if match else cia_name # "ActorClass(Obj)" -> "Obj"
|
||||
name = f"{self.name_prefix}{cia_name}_{pg_idx}:{local_rank}" # e.g. Worker_2:5
|
||||
|
||||
ray_cls_with_init.update_options({'runtime_env': {'env_vars': env_vars}, 'name': name})
|
||||
|
||||
if detached:
|
||||
ray_cls_with_init.update_options({'lifetime': 'detached'})
|
||||
|
||||
# create a worker
|
||||
worker = ray_cls_with_init(placement_group=pg,
|
||||
placement_group_bundle_idx=local_rank,
|
||||
use_gpu=use_gpu,
|
||||
num_gpus=num_gpus)
|
||||
self._workers.append(worker)
|
||||
self._worker_names.append(name)
|
||||
|
||||
if rank == 0:
|
||||
register_center_actor = None
|
||||
for _ in range(120):
|
||||
if f"{self.name_prefix}_register_center" not in list_named_actors():
|
||||
time.sleep(1)
|
||||
else:
|
||||
register_center_actor = ray.get_actor(f"{self.name_prefix}_register_center")
|
||||
break
|
||||
assert register_center_actor is not None, f"failed to get register_center_actor: {self.name_prefix}_register_center in {list_named_actors(all_namespaces=True)}"
|
||||
rank_zero_info = ray.get(register_center_actor.get_rank_zero_info.remote())
|
||||
self._master_addr, self._master_port = rank_zero_info['MASTER_ADDR'], rank_zero_info['MASTER_PORT']
|
||||
# print(f"rank_zero_info: {rank_zero_info}")
|
||||
# print(f"master_addr: {self._master_addr}, master_port: {self._master_port}")
|
||||
|
||||
@property
|
||||
def worker_names(self):
|
||||
return self._worker_names
|
||||
|
||||
@classmethod
|
||||
def from_detached(cls, worker_names=None, ray_cls_with_init=None):
|
||||
worker_group = cls(resource_pool=None,
|
||||
ray_cls_with_init=ray_cls_with_init,
|
||||
name_prefix=None,
|
||||
worker_names=worker_names)
|
||||
return worker_group
|
||||
|
||||
def spawn(self, prefix_set):
|
||||
"""
|
||||
spawn to a dictionary of worker groups, each with a subset of method with prefix.
|
||||
|
||||
"""
|
||||
|
||||
def _rebind_actor_methods(worker_group, actor_name):
|
||||
"""
|
||||
bind the method with actor_prefix to its original name
|
||||
"""
|
||||
prefix: str = actor_name + '_'
|
||||
for method_name in dir(worker_group):
|
||||
if method_name.startswith(prefix):
|
||||
# only valid when Python >= 3.9
|
||||
original_method_name = method_name.removeprefix(prefix)
|
||||
method = getattr(worker_group, method_name)
|
||||
setattr(worker_group, original_method_name, method)
|
||||
|
||||
new_worker_group_dict = {}
|
||||
for prefix in prefix_set:
|
||||
new_worker_group = self.from_detached(worker_names=self._worker_names,
|
||||
ray_cls_with_init=self.ray_cls_with_init)
|
||||
|
||||
_rebind_actor_methods(new_worker_group, prefix)
|
||||
new_worker_group_dict[prefix] = new_worker_group
|
||||
return new_worker_group_dict
|
||||
|
||||
def execute_rank_zero_sync(self, method_name: str, *args, **kwargs):
|
||||
return ray.get(self.execute_all_async(method_name, **args, **kwargs))
|
||||
|
||||
def execute_rank_zero_async(self, method_name: str, *args, **kwargs):
|
||||
remote_call = getattr(self._workers[0], method_name)
|
||||
return remote_call.remote(*args, **kwargs)
|
||||
|
||||
def execute_rank_zero(self, method_name: str, *args, **kwargs):
|
||||
return self.execute_rank_zero_async(method_name, *args, **kwargs)
|
||||
|
||||
def execute_all(self, method_name: str, *args, **kwargs):
|
||||
return self.execute_all_async(method_name, *args, **kwargs)
|
||||
|
||||
def execute_all_sync(self, method_name: str, *args, **kwargs):
|
||||
return ray.get(self.execute_all_async(method_name, *args, **kwargs))
|
||||
|
||||
def execute_all_async(self, method_name: str, *args, **kwargs):
|
||||
# 这里我们假设,如果 args 和 kwargs 里面所有的参数都是 list,且所有的 list 长度都与 len(self._workers) 一致的话,我们会把
|
||||
# list 中的每一个分别发到对应的 worker 上去
|
||||
# print(f"execute_all_async: method {method_name}({args}, {kwargs})")
|
||||
length = len(self._workers)
|
||||
if all(isinstance(arg, list) for arg in args) and all(isinstance(kwarg, list) for kwarg in kwargs.values()):
|
||||
if all(len(arg) == length for arg in args) and all(len(kwarg) == length for kwarg in kwargs.values()):
|
||||
# print(f"splitting args and kwargs into {length} shards")
|
||||
result = []
|
||||
for i in range(length):
|
||||
sliced_args = tuple(arg[i] for arg in args)
|
||||
sliced_kwargs = {k: v[i] for k, v in kwargs.items()}
|
||||
remote_call = getattr(self._workers[i], method_name)
|
||||
result.append(remote_call.remote(*sliced_args, **sliced_kwargs))
|
||||
return result
|
||||
|
||||
return [getattr(worker, method_name).remote(*args, **kwargs) for worker in self._workers]
|
||||
|
||||
@property
|
||||
def master_address(self):
|
||||
return self._master_addr
|
||||
|
||||
@property
|
||||
def master_port(self):
|
||||
return self._master_port
|
||||
|
||||
@property
|
||||
def workers(self):
|
||||
return self._workers
|
||||
|
||||
@property
|
||||
def world_size(self):
|
||||
return self._world_size
|
||||
|
||||
|
||||
"""
|
||||
Utilities that enables creating workers inside the same ray.Actor,
|
||||
with code written in separate ray.Actors.
|
||||
"""
|
||||
|
||||
from unittest.mock import patch
|
||||
from verl.single_controller.base.decorator import MAGIC_ATTR
|
||||
import os
|
||||
|
||||
|
||||
def _bind_workers_method_to_parent(cls, key, user_defined_cls):
|
||||
"""
|
||||
Binds the methods of each worker to the WorkerDict.
|
||||
Note that we only bind public methods that are decorated by register
|
||||
"""
|
||||
for method_name in dir(user_defined_cls):
|
||||
try:
|
||||
method = getattr(user_defined_cls, method_name)
|
||||
assert callable(method), f"{method_name} in {user_defined_cls} is not callable"
|
||||
except Exception as e:
|
||||
# if it is a property, it will fail because Class doesn't have instance property
|
||||
continue
|
||||
|
||||
if hasattr(method, MAGIC_ATTR):
|
||||
|
||||
def generate_function(name):
|
||||
|
||||
def func(self, *args, **kwargs):
|
||||
# dispatch to the actual worker
|
||||
return getattr(self.worker_dict[key], name)(*args, **kwargs)
|
||||
|
||||
return func
|
||||
|
||||
func = generate_function(method_name)
|
||||
# pass MAGIC_ATTR for outer worker group
|
||||
setattr(func, MAGIC_ATTR, getattr(method, MAGIC_ATTR))
|
||||
try:
|
||||
method_name_with_prefix = key + '_' + method_name
|
||||
setattr(cls, method_name_with_prefix, func)
|
||||
# print(f'Binding {method_name_with_prefix}')
|
||||
except Exception as e:
|
||||
raise ValueError(f'Fail to set method_name {method_name}')
|
||||
|
||||
|
||||
def _unwrap_ray_remote(cls):
|
||||
if hasattr(cls, '__ray_actor_class__'):
|
||||
cls = cls.__ray_actor_class__
|
||||
return cls
|
||||
|
||||
|
||||
def create_colocated_worker_cls(class_dict: dict[str, RayClassWithInitArgs]):
|
||||
"""
|
||||
This function should return a class instance that delegates the calls to every
|
||||
cls in cls_dict
|
||||
"""
|
||||
cls_dict = {}
|
||||
init_args_dict = {}
|
||||
worker_cls = None
|
||||
for key, cls in class_dict.items():
|
||||
if worker_cls == None:
|
||||
worker_cls = cls.cls.__ray_actor_class__.__base__
|
||||
else:
|
||||
assert worker_cls == cls.cls.__ray_actor_class__.__base__, \
|
||||
'the worker class should be the same when share the same process'
|
||||
cls_dict[key] = cls.cls
|
||||
init_args_dict[key] = {'args': cls.args, 'kwargs': cls.kwargs}
|
||||
|
||||
assert cls_dict.keys() == init_args_dict.keys()
|
||||
|
||||
# TODO: create a class with customizable name
|
||||
class WorkerDict(worker_cls):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.worker_dict = {}
|
||||
for key, user_defined_cls in cls_dict.items():
|
||||
user_defined_cls = _unwrap_ray_remote(user_defined_cls)
|
||||
# directly instantiate the class without remote
|
||||
with patch.dict(os.environ, {'DISABLE_WORKER_INIT': '1'}):
|
||||
self.worker_dict[key] = user_defined_cls(*init_args_dict[key].get('args', ()),
|
||||
**init_args_dict[key].get('kwargs', {}))
|
||||
|
||||
# now monkey-patch the methods from inner class to WorkerDict
|
||||
for key, user_defined_cls in cls_dict.items():
|
||||
user_defined_cls = _unwrap_ray_remote(user_defined_cls)
|
||||
_bind_workers_method_to_parent(WorkerDict, key, user_defined_cls)
|
||||
|
||||
remote_cls = ray.remote(WorkerDict)
|
||||
remote_cls = RayClassWithInitArgs(cls=remote_cls)
|
||||
return remote_cls
|
||||
Reference in New Issue
Block a user