Initial commit
This commit is contained in:
6
verl/trainer/config/evaluation.yaml
Normal file
6
verl/trainer/config/evaluation.yaml
Normal file
@@ -0,0 +1,6 @@
|
||||
data:
|
||||
path: /tmp/math_Qwen2-7B-Instruct.parquet
|
||||
prompt_key: prompt
|
||||
response_key: responses
|
||||
data_source_key: data_source
|
||||
reward_model_key: reward_model
|
||||
35
verl/trainer/config/generation.yaml
Normal file
35
verl/trainer/config/generation.yaml
Normal file
@@ -0,0 +1,35 @@
|
||||
trainer:
|
||||
nnodes: 1
|
||||
n_gpus_per_node: 8
|
||||
|
||||
data:
|
||||
path: ~/data/rlhf/math/test.parquet
|
||||
prompt_key: prompt
|
||||
n_samples: 5
|
||||
output_path: /opt/tiger/math_Qwen2-7B-Instruct.parquet
|
||||
batch_size: 128
|
||||
|
||||
model:
|
||||
path: ~/models/Qwen2-7B-Instruct
|
||||
external_lib: null
|
||||
rollout:
|
||||
name: vllm
|
||||
temperature: 1.0
|
||||
top_k: 50 # 0 for hf rollout, -1 for vllm rollout
|
||||
top_p: 0.7
|
||||
prompt_length: 1536
|
||||
response_length: 512
|
||||
# for vllm rollout
|
||||
dtype: bfloat16 # should align with FSDP
|
||||
gpu_memory_utilization: 0.5
|
||||
ignore_eos: False
|
||||
micro_batch_size: 256
|
||||
enforce_eager: True
|
||||
free_cache_engine: True
|
||||
load_format: dummy_dtensor
|
||||
tensor_model_parallel_size: 1
|
||||
max_num_batched_tokens: 8192
|
||||
max_num_seqs: 1024
|
||||
log_prob_micro_batch_size: 8
|
||||
# for hf rollout
|
||||
do_sample: True
|
||||
148
verl/trainer/config/ppo_megatron_trainer.yaml
Normal file
148
verl/trainer/config/ppo_megatron_trainer.yaml
Normal file
@@ -0,0 +1,148 @@
|
||||
data:
|
||||
tokenizer: null
|
||||
train_files: ~/data/rlhf/gsm8k/train.parquet
|
||||
val_files: ~/data/rlhf/gsm8k/test.parquet
|
||||
prompt_key: prompt
|
||||
max_prompt_length: 512
|
||||
max_response_length: 512
|
||||
train_batch_size: 1024
|
||||
val_batch_size: 1312
|
||||
return_raw_input_ids: False # This should be set to true when the tokenizer between policy and rm differs
|
||||
return_raw_chat: False
|
||||
|
||||
actor_rollout_ref:
|
||||
hybrid_engine: True
|
||||
model:
|
||||
path: ~/models/deepseek-llm-7b-chat
|
||||
external_lib: null
|
||||
override_config: {}
|
||||
enable_gradient_checkpointing: False
|
||||
actor:
|
||||
strategy: megatron # This is for backward-compatibility
|
||||
ppo_mini_batch_size: 256
|
||||
ppo_micro_batch_size: 64
|
||||
clip_ratio: 0.2
|
||||
entropy_coeff: 0.001
|
||||
ppo_epochs: 1
|
||||
shuffle: True
|
||||
optim:
|
||||
lr: 1e-6
|
||||
clip_grad: 1.0
|
||||
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
||||
min_lr_ratio: null # only useful for warmup with cosine
|
||||
warmup_style: constant # select from constant/cosine
|
||||
total_training_steps: -1 # must be override by program
|
||||
megatron:
|
||||
tensor_model_parallel_size: 4
|
||||
pipeline_model_parallel_size: 1
|
||||
num_layers_per_virtual_pipeline_stage: null # vpp will hang. need debug.
|
||||
sequence_parallel: True
|
||||
seed: 1
|
||||
load_weight: True
|
||||
ref:
|
||||
megatron:
|
||||
tensor_model_parallel_size: 4
|
||||
pipeline_model_parallel_size: 1
|
||||
num_layers_per_virtual_pipeline_stage: null # vpp will hang. need debug.
|
||||
sequence_parallel: True
|
||||
seed: 1
|
||||
load_weight: True
|
||||
param_offload: False
|
||||
log_prob_micro_batch_size: 32
|
||||
rollout:
|
||||
name: vllm
|
||||
temperature: 1.0
|
||||
top_k: -1 # 0 for hf rollout, -1 for vllm rollout
|
||||
top_p: 1
|
||||
prompt_length: ${data.max_prompt_length} # for xperf_gpt
|
||||
response_length: ${data.max_response_length}
|
||||
# for vllm rollout
|
||||
dtype: bfloat16 # should align with FSDP
|
||||
gpu_memory_utilization: 0.5
|
||||
ignore_eos: False
|
||||
enforce_eager: True
|
||||
free_cache_engine: True
|
||||
load_format: dummy_megatron
|
||||
tensor_model_parallel_size: 2
|
||||
max_num_batched_tokens: 8192
|
||||
max_num_seqs: 1024
|
||||
log_prob_micro_batch_size: 2
|
||||
# for hf rollout
|
||||
do_sample: True
|
||||
layer_name_map:
|
||||
qkv_layer_name: qkv
|
||||
gate_proj_layer_name: gate_up
|
||||
# number of responses (i.e. num sample times)
|
||||
n: 1
|
||||
|
||||
critic:
|
||||
strategy: megatron
|
||||
optim:
|
||||
lr: 1e-5
|
||||
clip_grad: 1.0
|
||||
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
||||
min_lr_ratio: null # only useful for warmup with cosine
|
||||
warmup_style: constant # select from constant/cosine
|
||||
total_training_steps: -1 # must be override by program
|
||||
model:
|
||||
path: ~/models/deepseek-llm-7b-chat
|
||||
tokenizer_path: ${actor_rollout_ref.model.path}
|
||||
override_config: {}
|
||||
external_lib: ${actor_rollout_ref.model.external_lib}
|
||||
enable_gradient_checkpointing: False
|
||||
megatron:
|
||||
tensor_model_parallel_size: 4
|
||||
pipeline_model_parallel_size: 1
|
||||
num_layers_per_virtual_pipeline_stage: null # vpp will hang. need debug.
|
||||
sequence_parallel: True
|
||||
seed: 1
|
||||
load_weight: True
|
||||
ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
|
||||
ppo_micro_batch_size: 2
|
||||
ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
|
||||
shuffle: ${actor_rollout_ref.actor.shuffle}
|
||||
cliprange_value: 0.5
|
||||
kl_ctrl:
|
||||
type: fixed
|
||||
kl_coef: 0.001
|
||||
|
||||
reward_model:
|
||||
enable: False
|
||||
strategy: megatron
|
||||
megatron:
|
||||
tensor_model_parallel_size: 4
|
||||
pipeline_model_parallel_size: 1
|
||||
num_layers_per_virtual_pipeline_stage: null # vpp will hang. need debug.
|
||||
sequence_parallel: True
|
||||
seed: 1
|
||||
model:
|
||||
input_tokenizer: ${actor_rollout_ref.model.path} # set this to null if the chat template is identical
|
||||
path: ~/models/FsfairX-LLaMA3-RM-v0.1
|
||||
external_lib: ${actor_rollout_ref.model.external_lib}
|
||||
load_weight: True
|
||||
param_offload: False
|
||||
micro_batch_size: 64
|
||||
max_length: null
|
||||
|
||||
algorithm:
|
||||
gamma: 1.0
|
||||
lam: 1.0
|
||||
adv_estimator: gae
|
||||
kl_penalty: kl # how to estimate kl divergence
|
||||
kl_ctrl:
|
||||
type: fixed
|
||||
kl_coef: 0.001
|
||||
|
||||
trainer:
|
||||
total_epochs: 30
|
||||
total_training_steps: null
|
||||
project_name: verl_examples
|
||||
experiment_name: gsm8k
|
||||
logger: ['console', 'wandb']
|
||||
nnodes: 1
|
||||
n_gpus_per_node: 8
|
||||
save_freq: -1
|
||||
test_freq: 2
|
||||
critic_warmup: 0
|
||||
default_hdfs_dir: ~/experiments/gsm8k/ppo/${trainer.experiment_name}
|
||||
default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
|
||||
177
verl/trainer/config/ppo_trainer.yaml
Normal file
177
verl/trainer/config/ppo_trainer.yaml
Normal file
@@ -0,0 +1,177 @@
|
||||
data:
|
||||
tokenizer: null
|
||||
train_files: ~/data/rlhf/gsm8k/train.parquet
|
||||
val_files: ~/data/rlhf/gsm8k/test.parquet
|
||||
train_data_num: null
|
||||
val_data_num: null
|
||||
prompt_key: prompt
|
||||
max_prompt_length: 512
|
||||
max_response_length: 512
|
||||
max_start_length: 256
|
||||
max_obs_length: 512
|
||||
train_batch_size: 1024
|
||||
val_batch_size: 1312
|
||||
return_raw_input_ids: False # This should be set to true when the tokenizer between policy and rm differs
|
||||
return_raw_chat: False
|
||||
shuffle_train_dataloader: True
|
||||
|
||||
actor_rollout_ref:
|
||||
hybrid_engine: True
|
||||
model:
|
||||
path: ~/models/deepseek-llm-7b-chat
|
||||
external_lib: null
|
||||
override_config: { }
|
||||
enable_gradient_checkpointing: False
|
||||
use_remove_padding: False
|
||||
actor:
|
||||
strategy: fsdp # This is for backward-compatibility
|
||||
ppo_mini_batch_size: 256
|
||||
ppo_micro_batch_size: 64
|
||||
use_dynamic_bsz: False
|
||||
ppo_max_token_len_per_gpu: 16384 # n * ${data.max_prompt_length} + ${data.max_response_length}
|
||||
grad_clip: 1.0
|
||||
state_masking: False
|
||||
clip_ratio: 0.2
|
||||
entropy_coeff: 0.001
|
||||
use_kl_loss: False # True for GRPO
|
||||
kl_loss_coef: 0.001 # for grpo
|
||||
kl_loss_type: low_var_kl # for grpo
|
||||
ppo_epochs: 1
|
||||
shuffle: False
|
||||
ulysses_sequence_parallel_size: 1 # sp size
|
||||
optim:
|
||||
lr: 1e-6
|
||||
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
||||
min_lr_ratio: null # only useful for warmup with cosine
|
||||
warmup_style: constant # select from constant/cosine
|
||||
total_training_steps: -1 # must be override by program
|
||||
fsdp_config:
|
||||
wrap_policy:
|
||||
# transformer_layer_cls_to_wrap: None
|
||||
min_num_params: 0
|
||||
param_offload: False
|
||||
grad_offload: False
|
||||
optimizer_offload: False
|
||||
fsdp_size: -1
|
||||
ref:
|
||||
fsdp_config:
|
||||
param_offload: False
|
||||
wrap_policy:
|
||||
# transformer_layer_cls_to_wrap: None
|
||||
min_num_params: 0
|
||||
fsdp_size: -1
|
||||
log_prob_micro_batch_size: 128
|
||||
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
||||
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
|
||||
ulysses_sequence_parallel_size: ${actor_rollout_ref.actor.ulysses_sequence_parallel_size} # sp size
|
||||
rollout:
|
||||
name: vllm
|
||||
temperature: 1.0
|
||||
top_k: -1 # 0 for hf rollout, -1 for vllm rollout
|
||||
top_p: 0.95
|
||||
prompt_length: ${data.max_prompt_length} # not use for opensource
|
||||
response_length: ${data.max_response_length}
|
||||
# for vllm rollout
|
||||
dtype: bfloat16 # should align with FSDP
|
||||
gpu_memory_utilization: 0.5
|
||||
ignore_eos: False
|
||||
enforce_eager: True
|
||||
free_cache_engine: True
|
||||
load_format: dummy_dtensor
|
||||
tensor_model_parallel_size: 2
|
||||
max_num_batched_tokens: 8192
|
||||
max_num_seqs: 1024
|
||||
log_prob_micro_batch_size: 128
|
||||
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
||||
log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
|
||||
# for hf rollout
|
||||
do_sample: True
|
||||
# number of responses (i.e. num sample times)
|
||||
n: 1 # > 1 for grpo
|
||||
n_agent: 1 # different here used for agent tasks only
|
||||
|
||||
critic:
|
||||
strategy: fsdp
|
||||
optim:
|
||||
lr: 1e-5
|
||||
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
||||
min_lr_ratio: null # only useful for warmup with cosine
|
||||
warmup_style: constant # select from constant/cosine
|
||||
total_training_steps: -1 # must be override by program
|
||||
model:
|
||||
path: ~/models/deepseek-llm-7b-chat
|
||||
tokenizer_path: ${actor_rollout_ref.model.path}
|
||||
override_config: { }
|
||||
external_lib: ${actor_rollout_ref.model.external_lib}
|
||||
enable_gradient_checkpointing: False
|
||||
use_remove_padding: False
|
||||
fsdp_config:
|
||||
param_offload: False
|
||||
grad_offload: False
|
||||
optimizer_offload: False
|
||||
wrap_policy:
|
||||
# transformer_layer_cls_to_wrap: None
|
||||
min_num_params: 0
|
||||
fsdp_size: -1
|
||||
ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
|
||||
ppo_micro_batch_size: 64
|
||||
forward_micro_batch_size: ${critic.ppo_micro_batch_size}
|
||||
use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
|
||||
ppo_max_token_len_per_gpu: 32768 # (${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}) * 2
|
||||
forward_max_token_len_per_gpu: ${critic.ppo_max_token_len_per_gpu}
|
||||
ulysses_sequence_parallel_size: 1 # sp size
|
||||
ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
|
||||
shuffle: ${actor_rollout_ref.actor.shuffle}
|
||||
grad_clip: 1.0
|
||||
cliprange_value: 0.5
|
||||
|
||||
reward_model:
|
||||
enable: False
|
||||
strategy: fsdp
|
||||
model:
|
||||
input_tokenizer: ${actor_rollout_ref.model.path} # set this to null if the chat template is identical
|
||||
path: ~/models/FsfairX-LLaMA3-RM-v0.1
|
||||
external_lib: ${actor_rollout_ref.model.external_lib}
|
||||
use_remove_padding: False
|
||||
fsdp_config:
|
||||
min_num_params: 0
|
||||
param_offload: False
|
||||
micro_batch_size: 64
|
||||
max_length: null
|
||||
ulysses_sequence_parallel_size: 1 # sp size
|
||||
use_dynamic_bsz: ${critic.use_dynamic_bsz}
|
||||
forward_max_token_len_per_gpu: ${critic.forward_max_token_len_per_gpu}
|
||||
|
||||
retriever:
|
||||
url: "http://127.0.0.1:8000/retrieve"
|
||||
topk: 3
|
||||
|
||||
algorithm:
|
||||
gamma: 1.0
|
||||
lam: 1.0
|
||||
adv_estimator: gae
|
||||
no_think_rl: False
|
||||
kl_penalty: kl # how to estimate kl divergence
|
||||
kl_ctrl:
|
||||
type: fixed
|
||||
kl_coef: 0.001
|
||||
state_masking:
|
||||
start_state_marker: "<information>"
|
||||
end_state_marker: "</information>"
|
||||
|
||||
trainer:
|
||||
total_epochs: 30
|
||||
total_training_steps: null
|
||||
project_name: verl_examples
|
||||
experiment_name: gsm8k
|
||||
logger: [ 'console', 'wandb' ]
|
||||
nnodes: 1
|
||||
n_gpus_per_node: 8
|
||||
save_freq: -1
|
||||
test_freq: -1
|
||||
critic_warmup: 0
|
||||
default_hdfs_dir: ~/experiments/gsm8k/ppo/${trainer.experiment_name}
|
||||
default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
|
||||
|
||||
max_turns: 10
|
||||
do_search: true
|
||||
42
verl/trainer/config/sft_trainer.yaml
Normal file
42
verl/trainer/config/sft_trainer.yaml
Normal file
@@ -0,0 +1,42 @@
|
||||
data:
|
||||
train_batch_size: 256
|
||||
micro_batch_size: 16 # this is also val batch size
|
||||
train_files: ~/data/gsm8k/train.parquet
|
||||
val_files: ~/data/gsm8k/test.parquet
|
||||
prompt_key: question
|
||||
response_key: answer
|
||||
max_length: 1024
|
||||
truncation: error
|
||||
balance_dp_token: False
|
||||
chat_template: null
|
||||
model:
|
||||
partial_pretrain: ~/models/gemma-1.1-7b-it
|
||||
fsdp_config:
|
||||
wrap_policy:
|
||||
min_num_params: 0
|
||||
cpu_offload: False
|
||||
offload_params: False
|
||||
external_lib: null
|
||||
enable_gradient_checkpointing: False
|
||||
trust_remote_code: False
|
||||
lora_rank: 0 # Set to positive value to enable LoRA (e.g., 32)
|
||||
lora_alpha: 16 # LoRA scaling factor
|
||||
target_modules: [q_proj, v_proj] # Target modules for LoRA adaptation
|
||||
optim:
|
||||
lr: 1e-5
|
||||
betas: [0.9, 0.95]
|
||||
weight_decay: 0.01
|
||||
warmup_steps_ratio: 0.1
|
||||
clip_grad: 1.0
|
||||
|
||||
trainer:
|
||||
default_local_dir: /tmp/sft_model
|
||||
default_hdfs_dir: hdfs://tmp/experiments/gsm8k/gemma-1.1-7b-it/ # change the hdfs path here
|
||||
resume_path: null
|
||||
project_name: gsm8k-sft
|
||||
experiment_name: test
|
||||
total_epochs: 4
|
||||
total_training_steps: null
|
||||
validate_before_training: False
|
||||
logger: ['console']
|
||||
seed: 1
|
||||
Reference in New Issue
Block a user