Initial commit
This commit is contained in:
69
verl/trainer/main_eval.py
Normal file
69
verl/trainer/main_eval.py
Normal file
@@ -0,0 +1,69 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Offline evaluate the performance of a generated file using reward model and ground truth verifier.
|
||||
The input is a parquet file that contains N generated sequences and (optional) the ground truth.
|
||||
|
||||
"""
|
||||
|
||||
import hydra
|
||||
from verl.utils.fs import copy_local_path_from_hdfs
|
||||
from verl.utils.reward_score import math, gsm8k
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
|
||||
def select_reward_fn(data_source):
|
||||
if data_source == 'lighteval/MATH':
|
||||
return math.compute_score
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@hydra.main(config_path='config', config_name='evaluation', version_base=None)
|
||||
def main(config):
|
||||
local_path = copy_local_path_from_hdfs(config.data.path)
|
||||
dataset = pd.read_parquet(local_path)
|
||||
prompts = dataset[config.data.prompt_key]
|
||||
responses = dataset[config.data.response_key]
|
||||
data_sources = dataset[config.data.data_source_key]
|
||||
reward_model_data = dataset[config.data.reward_model_key]
|
||||
|
||||
passes = 0
|
||||
|
||||
total = len(dataset)
|
||||
|
||||
for i in range(total):
|
||||
response_lst = responses[i]
|
||||
data_source = data_sources[i]
|
||||
# select reward score based on data_source
|
||||
prompt = prompts[i]
|
||||
reward_data = reward_model_data[i]
|
||||
reward_fn = select_reward_fn(data_source)
|
||||
ground_truth = reward_data['ground_truth']
|
||||
score_lst = []
|
||||
for r in response_lst:
|
||||
score = reward_fn(r, ground_truth)
|
||||
score_lst.append(score)
|
||||
|
||||
max_score = np.max(score_lst)
|
||||
|
||||
if max_score == 1:
|
||||
passes += 1
|
||||
|
||||
print(f'pass@5: {passes / total}')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user