Initial commit
This commit is contained in:
15
verl/utils/debug/__init__.py
Normal file
15
verl/utils/debug/__init__.py
Normal file
@@ -0,0 +1,15 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .performance import log_gpu_memory_usage
|
||||
30
verl/utils/debug/performance.py
Normal file
30
verl/utils/debug/performance.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import logging
|
||||
|
||||
|
||||
def log_gpu_memory_usage(head: str, logger: logging.Logger = None, level=logging.DEBUG, rank: int = 0):
|
||||
if (not dist.is_initialized()) or (rank is None) or (dist.get_rank() == rank):
|
||||
memory_allocated = torch.cuda.memory_allocated() / 1024**3
|
||||
memory_reserved = torch.cuda.memory_reserved() / 1024**3
|
||||
|
||||
message = f'{head}, memory allocated (GB): {memory_allocated}, memory reserved (GB): {memory_reserved}'
|
||||
|
||||
if logger is None:
|
||||
print(message)
|
||||
else:
|
||||
logger.log(msg=message, level=level)
|
||||
108
verl/utils/debug/trajectory_tracker.py
Normal file
108
verl/utils/debug/trajectory_tracker.py
Normal file
@@ -0,0 +1,108 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Trajectory tracker can be inserted into code to save the intermediate results.
|
||||
The results will be dump to hdfs for offline comparison.
|
||||
Each process will have a client that first move all the tensors to CPU
|
||||
"""
|
||||
|
||||
from verl.utils.hdfs_io import makedirs, copy
|
||||
import torch
|
||||
import os
|
||||
import ray
|
||||
import io
|
||||
import tempfile
|
||||
|
||||
from collections import deque
|
||||
|
||||
remote_copy = ray.remote(copy)
|
||||
|
||||
|
||||
@ray.remote
|
||||
def save_to_hdfs(data: io.BytesIO, name, hdfs_dir, verbose):
|
||||
filename = name + '.pth'
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
local_filepath = os.path.join(tmpdirname, filename)
|
||||
with open(local_filepath, 'wb') as f:
|
||||
f.write(data.getbuffer())
|
||||
# upload to hdfs
|
||||
|
||||
if verbose:
|
||||
print(f'Saving {local_filepath} to {hdfs_dir}')
|
||||
try:
|
||||
copy(local_filepath, hdfs_dir)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
@ray.remote
|
||||
class TrajectoryTracker():
|
||||
|
||||
def __init__(self, hdfs_dir, verbose) -> None:
|
||||
self.hdfs_dir = hdfs_dir
|
||||
makedirs(hdfs_dir)
|
||||
self.verbose = verbose
|
||||
|
||||
self.handle = deque()
|
||||
|
||||
def dump(self, data: io.BytesIO, name):
|
||||
# get a temp file and write to it
|
||||
self.handle.append(save_to_hdfs.remote(data, name, self.hdfs_dir, self.verbose))
|
||||
|
||||
def wait_for_hdfs(self):
|
||||
while len(self.handle) != 0:
|
||||
future = self.handle.popleft()
|
||||
ray.get(future)
|
||||
|
||||
|
||||
def dump_data(data, name):
|
||||
enable = os.getenv('VERL_ENABLE_TRACKER', '0') == '1'
|
||||
if not enable:
|
||||
return
|
||||
buffer = io.BytesIO()
|
||||
torch.save(data, buffer)
|
||||
tracker = get_trajectory_tracker()
|
||||
ray.get(tracker.dump.remote(buffer, name))
|
||||
|
||||
|
||||
def get_trajectory_tracker():
|
||||
hdfs_dir = os.getenv('VERL_TRACKER_HDFS_DIR', default=None)
|
||||
verbose = os.getenv('VERL_TRACKER_VERBOSE', default='0') == '1'
|
||||
assert hdfs_dir is not None
|
||||
tracker = TrajectoryTracker.options(name="global_tracker", get_if_exists=True,
|
||||
lifetime="detached").remote(hdfs_dir, verbose)
|
||||
return tracker
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# testing
|
||||
os.environ['VERL_ENABLE_TRACKER'] = '1'
|
||||
os.environ['VERL_TRACKER_HDFS_DIR'] = '~/debug/test'
|
||||
|
||||
@ray.remote
|
||||
def process(iter):
|
||||
data = {'obs': torch.randn(10, 20)}
|
||||
dump_data(data, f'process_{iter}_obs')
|
||||
|
||||
ray.init()
|
||||
|
||||
output_lst = []
|
||||
|
||||
for i in range(10):
|
||||
output_lst.append(process.remote(i))
|
||||
|
||||
out = ray.get(output_lst)
|
||||
|
||||
tracker = get_trajectory_tracker()
|
||||
ray.get(tracker.wait_for_hdfs.remote())
|
||||
Reference in New Issue
Block a user