Initial commit
This commit is contained in:
278
verl/workers/reward_model/megatron/reward_model.py
Normal file
278
verl/workers/reward_model/megatron/reward_model.py
Normal file
@@ -0,0 +1,278 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Megatron Reward Model.
|
||||
"""
|
||||
|
||||
from tensordict import TensorDict
|
||||
from functools import partial
|
||||
from verl import DataProto
|
||||
from verl.utils.torch_functional import logprobs_from_logits
|
||||
import torch
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from verl.utils.torch_functional import get_eos_mask, pad_sequence_to_length
|
||||
from verl.utils.megatron.pipeline_parallel import (compute_transformers_input_shapes, make_batch_generator)
|
||||
from verl import DataProto
|
||||
from verl.utils.torch_functional import logprobs_from_logits, broadcast_dict_tensor, split_dict_tensor_into_batches
|
||||
from verl.utils.torch_dtypes import PrecisionType
|
||||
from verl.workers.reward_model.base import BasePPORewardModel
|
||||
from verl.utils.megatron import sequence_parallel as sp_utils
|
||||
from megatron.core import parallel_state as mpu
|
||||
from megatron.core.pipeline_parallel import get_forward_backward_func
|
||||
|
||||
|
||||
class MegatronRewardModel(BasePPORewardModel):
|
||||
|
||||
def __init__(self,
|
||||
config,
|
||||
model_config,
|
||||
reward_model_module: torch.nn.ModuleList,
|
||||
megatron_config,
|
||||
sft_tokenizer=None,
|
||||
rm_tokenizer=None):
|
||||
self.config = config
|
||||
self.reward_model_module = reward_model_module
|
||||
self.megatron_config = megatron_config
|
||||
self.model_config = model_config
|
||||
self.device = 'cuda'
|
||||
self.sft_tokenizer = sft_tokenizer
|
||||
self.rm_tokenizer = rm_tokenizer
|
||||
self.use_different_tokenizer = rm_tokenizer is not None
|
||||
|
||||
if self.config.param_offload:
|
||||
self.offload_params_to_cpu()
|
||||
|
||||
def re_encode_by_rm_tokenizer(self, data: DataProto) -> DataProto:
|
||||
assert self.use_different_tokenizer, 're-encode need rm tokenizer not be None!'
|
||||
# need to use rm tokenizer to re-generate input_ids, attention_mask and position_ids
|
||||
# 1. remove pad for each sequence
|
||||
# 2. decode by sft_tokenizer, remove sft system prompts
|
||||
# 3. encode by rm_tokenizer with rm system prompts, get rm_input_ids
|
||||
# 4. generate attention_mask and position_ids
|
||||
input_ids = data.batch['input_ids'] # (bs, seq_len)
|
||||
attention_mask = data.batch['attention_mask']
|
||||
position_ids = data.batch['position_ids']
|
||||
ori_values = {'input_ids': input_ids, 'attention_mask': attention_mask, 'position_ids': position_ids}
|
||||
ori_bs, ori_seqlen = input_ids.size(0), input_ids.size(1)
|
||||
input_ids_for_rm = []
|
||||
attention_mask_for_rm = []
|
||||
position_ids_for_rm = []
|
||||
print_decode = True
|
||||
ori_seqlen = ori_seqlen + 128
|
||||
for id, mask in zip(input_ids, attention_mask):
|
||||
# 1. remove pad for each sequence
|
||||
non_zero_indices = torch.nonzero(mask).view(-1)
|
||||
begin_pos, end_pos = non_zero_indices[0].item(), non_zero_indices[-1].item()
|
||||
valid_id = id[begin_pos:end_pos + 1]
|
||||
# 2. decode by sft_tokenizer, remove sft system prompts
|
||||
decode_result = self.sft_tokenizer.decode(valid_id)
|
||||
# workaround
|
||||
decode_with_rm_chat = decode_result.replace("<|user|>\n", "[INST] ").replace(
|
||||
"</s>\n<|assistant|>\n", " [/INST]").replace("</s> \n<|assistant|>\n", " [/INST]") + "</s>"
|
||||
|
||||
print(f"decode_with_rm_chat: {decode_with_rm_chat}")
|
||||
|
||||
if print_decode and torch.distributed.get_rank() == 0:
|
||||
# only print first decode result
|
||||
print(f'device {torch.cuda.current_device()}: sft decode result:\n{decode_result}\n \
|
||||
\ndevice {torch.cuda.current_device()}: sft decode result with rm chat template:\n{decode_with_rm_chat}\n\n'
|
||||
)
|
||||
print_decode = False
|
||||
# 3. encode by rm_tokenizer
|
||||
rm_input_ids = self.rm_tokenizer(decode_with_rm_chat,
|
||||
return_tensors='pt')['input_ids'][0].to(input_ids.device)
|
||||
# 4. generate attention_mask and position_ids
|
||||
rm_attention_mask = torch.ones_like(rm_input_ids, device=input_ids.device)
|
||||
cur_seqlen = rm_input_ids.shape[-1]
|
||||
# NOTE(gh): the later reward compute will process the shape (bs, seqlen_pad_128)
|
||||
if cur_seqlen > ori_seqlen:
|
||||
print(f'warninig: rm encode seqlen {cur_seqlen} > sft encode seqlen {ori_seqlen}')
|
||||
rm_input_ids = rm_input_ids[:ori_seqlen]
|
||||
rm_attention_mask = rm_attention_mask[:ori_seqlen]
|
||||
else:
|
||||
# right padding
|
||||
rm_input_ids = pad_sequence_to_length(rm_input_ids, ori_seqlen, self.rm_tokenizer.pad_token_id)
|
||||
rm_attention_mask = pad_sequence_to_length(rm_attention_mask, ori_seqlen, 0)
|
||||
rm_position_ids = torch.arange(0, ori_seqlen, device=input_ids.device)
|
||||
input_ids_for_rm.append(torch.unsqueeze(rm_input_ids, dim=0))
|
||||
attention_mask_for_rm.append(torch.unsqueeze(rm_attention_mask, dim=0))
|
||||
position_ids_for_rm.append(torch.unsqueeze(rm_position_ids, dim=0))
|
||||
input_ids_for_rm = torch.cat(input_ids_for_rm, dim=0)
|
||||
attention_mask_for_rm = torch.cat(attention_mask_for_rm, dim=0)
|
||||
position_ids_for_rm = torch.cat(position_ids_for_rm, dim=0)
|
||||
|
||||
# (bs, seqlen) will not change, but input_ids, attention_mask and position_ids will change
|
||||
# NOTE(gh): need to replace into origin values after compute reward!
|
||||
data.batch['input_ids'] = input_ids_for_rm
|
||||
data.batch['attention_mask'] = attention_mask_for_rm
|
||||
data.batch['position_ids'] = position_ids_for_rm
|
||||
|
||||
return data, ori_values
|
||||
|
||||
@torch.no_grad()
|
||||
def compute_reward(self, data: DataProto) -> DataProto:
|
||||
if self.config.param_offload:
|
||||
self.load_params_to_cuda()
|
||||
|
||||
if self.use_different_tokenizer:
|
||||
data, ori_values = self.re_encode_by_rm_tokenizer(data)
|
||||
|
||||
input_ids = data.batch['input_ids'] # (bs, seq_len')
|
||||
attention_mask = data.batch['attention_mask']
|
||||
position_ids = data.batch['position_ids']
|
||||
|
||||
responses = data.batch['responses']
|
||||
batch_size = responses.size(0)
|
||||
response_length = responses.size(1)
|
||||
|
||||
with torch.no_grad():
|
||||
output = self.forward_batch(data)
|
||||
if mpu.is_pipeline_last_stage(ignore_virtual=True):
|
||||
logits = torch.cat([o['logits'] for o in output], dim=0)
|
||||
else:
|
||||
logits = torch.empty(
|
||||
(input_ids.shape[0], input_ids.shape[1]),
|
||||
dtype=torch.bfloat16, # TODO(sgm): check why is bfloat16
|
||||
device=input_ids.device)
|
||||
# broadcast across pp ranks
|
||||
torch.distributed.broadcast(tensor=logits,
|
||||
src=mpu.get_pipeline_model_parallel_last_rank(),
|
||||
group=mpu.get_pipeline_model_parallel_group(),
|
||||
async_op=False)
|
||||
|
||||
# (bs, seqlen', hidden_size) -> (bs, seqlen', 1) -> (bs, seqlen')
|
||||
token_level_rewards = logits
|
||||
# find the last token reward
|
||||
ends = attention_mask.cumsum(dim=-1).argmax(dim=-1).view(-1, 1) # (bs, 1)
|
||||
rewards = torch.gather(token_level_rewards, dim=1, index=ends) # (bs, 1)
|
||||
|
||||
if self.use_different_tokenizer:
|
||||
data.batch.update(ori_values)
|
||||
input_ids = ori_values['input_ids']
|
||||
attention_mask = ori_values['attention_mask']
|
||||
position_ids = ori_values['position_ids']
|
||||
|
||||
token_level_rewards = rewards.expand(attention_mask.shape[0], attention_mask.shape[1]) # (bs, ori_seqlen)
|
||||
|
||||
# assign last valid token reward to ori position
|
||||
eos_mask_idx = torch.argmax(position_ids * attention_mask, dim=-1) # (bs,)
|
||||
eos_mask = torch.zeros_like(attention_mask)
|
||||
eos_mask[torch.arange(batch_size), eos_mask_idx] = 1.
|
||||
|
||||
token_level_rewards = token_level_rewards * eos_mask
|
||||
token_level_rewards = token_level_rewards[:, -response_length:]
|
||||
|
||||
if self.config.param_offload:
|
||||
self.offload_params_to_cpu()
|
||||
else:
|
||||
# add empty cache after each compute
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
batch = TensorDict({'rm_scores': token_level_rewards}, batch_size=input_ids.shape[0])
|
||||
|
||||
return DataProto(batch=batch)
|
||||
|
||||
def forward_batch(self, data: DataProto):
|
||||
"""
|
||||
We assume:
|
||||
- The model takes input: (input_ids, attention_mask, position_ids). No rmpad for the input
|
||||
- The communication shape is (total_nnz_pad_to_sp // tp_size, 1, hidden_size) if sequence parallel is enabled
|
||||
"""
|
||||
# broadcast from last pp rank to all other pp ranks
|
||||
# TODO: actually, we just need to control the sampling order.
|
||||
data.batch = data.batch.contiguous()
|
||||
broadcast_dict_tensor(data.batch,
|
||||
src=mpu.get_pipeline_model_parallel_last_rank(),
|
||||
group=mpu.get_pipeline_model_parallel_group())
|
||||
|
||||
# split into micro-batches
|
||||
if self.config is not None and 'ppo_micro_batch_size' in self.config:
|
||||
infer_batch_size = self.config.ppo_micro_batch_size
|
||||
else:
|
||||
infer_batch_size = data.batch.batch_size[0]
|
||||
|
||||
data.batch['attention_mask'] = data.batch['attention_mask'].to(bool)
|
||||
batches = split_dict_tensor_into_batches(data.batch, batch_size=infer_batch_size)
|
||||
n_micro_batch = len(batches)
|
||||
seq_len = batches[0]['input_ids'].shape[1]
|
||||
|
||||
# compute input shapes for pp stages
|
||||
input_shapes = compute_transformers_input_shapes(
|
||||
batches,
|
||||
meta_info={
|
||||
'sequence_parallel': self.megatron_config.sequence_parallel,
|
||||
'hidden_size': self.model_config.hidden_size
|
||||
})
|
||||
# compute input shapes for pp stages
|
||||
forward_backward_func = get_forward_backward_func()
|
||||
|
||||
def loss_func(output):
|
||||
return 1., {'logits': output.logits}
|
||||
|
||||
def forward_step(batch_iter, model):
|
||||
batch = next(batch_iter)
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
position_ids = batch['position_ids']
|
||||
output = model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids)
|
||||
return output, loss_func
|
||||
|
||||
# batch should be a list of batches inside micro-batches
|
||||
batch_generator = make_batch_generator(batches, vpp_size=len(self.reward_model_module))
|
||||
|
||||
# TODO: we may use the new schedule instead
|
||||
# for flash-attn: (seq_len, batch_size, hidden_size) = (mbs*seq_len, 1, hidden_size)
|
||||
if mpu.get_pipeline_model_parallel_world_size() > 1:
|
||||
losses_reduced = forward_backward_func(
|
||||
forward_step_func=forward_step,
|
||||
data_iterator=batch_generator,
|
||||
model=self.reward_model_module,
|
||||
num_microbatches=n_micro_batch,
|
||||
input_shapes=input_shapes, # must set for flash-attn sequence packing
|
||||
seq_length=infer_batch_size * seq_len, # no use when input_shapes was set
|
||||
hidden_size=self.model_config.hidden_size, # no use when input_shapes was set
|
||||
micro_batch_size=1, # no use when input_shapes was set
|
||||
forward_only=True,
|
||||
)
|
||||
else:
|
||||
losses_reduced = forward_backward_func(
|
||||
forward_step_func=forward_step,
|
||||
data_iterator=batch_generator,
|
||||
model=self.reward_model_module,
|
||||
num_microbatches=n_micro_batch,
|
||||
seq_length=infer_batch_size * seq_len, # in use for pp = 1
|
||||
hidden_size=self.model_config.hidden_size, # in use for pp = 1
|
||||
micro_batch_size=1, # in use for pp = 1
|
||||
forward_only=True,
|
||||
)
|
||||
# loss_reduces contains the stats returned from loss_func
|
||||
|
||||
return losses_reduced
|
||||
|
||||
def offload_params_to_cpu(self):
|
||||
if self.device == 'cuda':
|
||||
for reward_model_module in self.reward_model_module:
|
||||
for name, param in reward_model_module.named_parameters():
|
||||
param.data = param.data.to('cpu', non_blocking=True)
|
||||
self.device = 'cpu'
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def load_params_to_cuda(self):
|
||||
if self.device == 'cpu':
|
||||
for reward_model_module in self.reward_model_module:
|
||||
for name, param in reward_model_module.named_parameters():
|
||||
param.data = param.data.to(torch.cuda.current_device(), non_blocking=True)
|
||||
self.device = 'cuda'
|
||||
Reference in New Issue
Block a user