export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 export DATA_DIR='data/nq_search' WAND_PROJECT='Search-R1' # export BASE_MODEL='meta-llama/Llama-3.2-3B' # export EXPERIMENT_NAME=nq-search-r1-grpo-llama3.2-3b-em # export BASE_MODEL='meta-llama/Llama-3.2-3B-Instruct' # export EXPERIMENT_NAME=nq-search-r1-grpo-llama3.2-3b-it-em # export BASE_MODEL='meta-llama/Llama-3.1-8B' # export EXPERIMENT_NAME=nq-search-r1-grpo-llama3.1-8b-em # export BASE_MODEL='meta-llama/Llama-3.1-8B-Instruct' # export EXPERIMENT_NAME=nq-search-r1-grpo-llama3.1-8b-it-em export BASE_MODEL='Qwen/Qwen2.5-3B' export EXPERIMENT_NAME=nq-search-r1-grpo-qwen2.5-3b-em # export BASE_MODEL='Qwen/Qwen2.5-3B-Instruct' # export EXPERIMENT_NAME=nq-search-r1-grpo-qwen2.5-3b-it-em # export BASE_MODEL='Qwen/Qwen2.5-7B' # export EXPERIMENT_NAME=nq-search-r1-grpo-qwen2.5-7b-em # export BASE_MODEL='Qwen/Qwen2.5-7B-Instruct' # export EXPERIMENT_NAME=nq-search-r1-grpo-qwen2.5-7b-it-em # set -x export VLLM_ATTENTION_BACKEND=XFORMERS # vllm + qwen2-7b with flash_attn has some issues # max_prompt_length = (config['training']['max_start_length'] + config['training']['max_response_length'] * (config['training']['max_turns'] - 1) + config['training']['max_obs_length'] * config['training']['max_turns']) PYTHONUNBUFFERED=1 python3 -m verl.trainer.main_ppo \ data.train_files=$TRAIN_DATA_DIR/train.parquet \ data.val_files=$TEST_DATA_DIR/test.parquet \ data.train_data_num=null \ data.val_data_num=null \ data.train_batch_size=512 \ data.val_batch_size=256 \ data.max_prompt_length=4096 \ data.max_response_length=500 \ data.max_start_length=2048 \ data.max_obs_length=500 \ data.shuffle_train_dataloader=True \ algorithm.adv_estimator=grpo \ actor_rollout_ref.model.path=$BASE_MODEL \ actor_rollout_ref.model.enable_gradient_checkpointing=true \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.optim.lr_warmup_steps_ratio=0.285 \ actor_rollout_ref.actor.use_kl_loss=true \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size=64 \ actor_rollout_ref.actor.fsdp_config.param_offload=true \ actor_rollout_ref.actor.fsdp_config.grad_offload=true \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=true \ actor_rollout_ref.rollout.log_prob_micro_batch_size=128 \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \ actor_rollout_ref.ref.log_prob_micro_batch_size=128 \ actor_rollout_ref.ref.fsdp_config.param_offload=True \ actor_rollout_ref.actor.kl_loss_coef=0.001 \ actor_rollout_ref.actor.kl_loss_type=low_var_kl \ algorithm.no_think_rl=false \ actor_rollout_ref.rollout.n_agent=5 \ actor_rollout_ref.rollout.temperature=1 \ actor_rollout_ref.actor.state_masking=true \ trainer.logger=['wandb'] \ +trainer.val_only=false \ +trainer.val_before_train=true \ trainer.default_hdfs_dir=null \ trainer.n_gpus_per_node=8 \ trainer.nnodes=1 \ trainer.save_freq=100 \ trainer.test_freq=50 \ trainer.project_name=$WAND_PROJECT \ trainer.experiment_name=$EXPERIMENT_NAME \ trainer.total_epochs=15 \ trainer.total_training_steps=1005 \ trainer.default_hdfs_dir=null \ trainer.default_local_dir=verl_checkpoints/$EXPERIMENT_NAME \ max_turns=2 \ retriever.url="http://127.0.0.1:8000/retrieve" \ retriever.topk=3 \ 2>&1 | tee $EXPERIMENT_NAME.log