# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Implement a multiprocess PPOCritic """ from functools import partial from typing import Iterable import torch import torch.distributed from omegaconf import OmegaConf from torch import nn from verl import DataProto from verl.trainer.ppo import core_algos from verl.workers.critic import BasePPOCritic from verl.utils.megatron.pipeline_parallel import (compute_transformers_input_shapes, make_batch_generator) from verl.utils.py_functional import append_to_dict from verl.utils.torch_dtypes import PrecisionType from verl.utils.torch_functional import masked_mean, broadcast_dict_tensor, split_dict_tensor_into_batches from verl.utils.megatron import sequence_parallel as sp_utils from verl.utils.megatron.optimizer_config import OptimizerConfig from megatron.optimizer import DistributedOptimizer from megatron.core import parallel_state as mpu from megatron.core.pipeline_parallel import get_forward_backward_func class MegatronPPOCritic(BasePPOCritic): def __init__(self, config, model_config, megatron_config, critic_module: nn.ModuleList, critic_optimizer: DistributedOptimizer, critic_optimizer_config: OptimizerConfig): super().__init__(config=config) self.model_config = model_config self.megatron_config = megatron_config self.critic_module = critic_module self.critic_optimizer = critic_optimizer self.critic_optimizer_config = critic_optimizer_config # we create a separate nametuple for optimizer step so that global args won't affect it. self.optimizer_step_args = OmegaConf.create({ 'skip_grad': None, 'overlap_dp_param_comm': False, 'overlap_dp_grad_comm': False, 'gradient_accumulation_steps': 1, 'sequence_parallel': self.megatron_config.sequence_parallel, 'DDP_impl': 'local', 'layernorm_allreduce_bucket_threshold': 0, 'pipeline_model_parallel_split_rank': None, 'reduce_grads_use_alltoall': False }) if self.config.kl_ctrl.type == 'fixed': self.kl_ctrl = core_algos.FixedKLController(kl_coef=self.config.kl_ctrl.kl_coef) elif self.config.kl_ctrl.type == 'adaptive': assert self.config.kl_ctrl.horizon > 0, f'horizon must be larger than 0. Got {self.config.kl_ctrl.horizon}' self.kl_ctrl = core_algos.AdaptiveKLController(init_kl_coef=self.config.kl_ctrl.kl_coef, target_kl=self.config.kl_ctrl.target_kl, horizon=self.config.kl_ctrl.horizon) else: raise NotImplementedError def compute_values(self, data: DataProto) -> DataProto: # data.batch = data.batch.to(self.critic_module.module.device) responses = data.batch['responses'] attention_mask = data.batch['attention_mask'] response_length = responses.size(1) with torch.no_grad(): output = self.forward_backward_batch(data=data, forward_only=True) if mpu.is_pipeline_last_stage(ignore_virtual=True): # only on last rank. It should be on every tp rank values = torch.cat([o['vpreds'] for o in output], dim=0) # (bs, seq_size, vocal_size) values = values.to(torch.float32) else: values = torch.empty_like(attention_mask, dtype=torch.float32) # each tp ranks should contain the same value values = values * attention_mask values = values[:, -response_length - 1:-1] values = values.contiguous() # sync among pp ranks torch.distributed.broadcast(tensor=values, src=mpu.get_pipeline_model_parallel_last_rank(), group=mpu.get_pipeline_model_parallel_group()) # add empty cache after each compute torch.cuda.empty_cache() return values def make_minibatch_iterator(self, data: DataProto) -> Iterable[DataProto]: select_keys = ['input_ids', 'responses', 'attention_mask', 'position_ids', 'values', 'returns'] data = data.select(batch_keys=select_keys) return data.make_iterator(mini_batch_size=self.config.ppo_mini_batch_size, epochs=self.config.ppo_epochs, dataloader_kwargs={'shuffle': self.config.shuffle}) def forward_backward_batch(self, data: DataProto, forward_only=False): # broadcast from last pp rank to all other pp ranks data.batch = data.batch.contiguous() broadcast_dict_tensor(data.batch, src=mpu.get_pipeline_model_parallel_last_rank(), group=mpu.get_pipeline_model_parallel_group()) # split into micro-batches data.batch['attention_mask'] = data.batch['attention_mask'].to(bool) batches = split_dict_tensor_into_batches(data.batch, batch_size=self.config.ppo_micro_batch_size) n_micro_batch = len(batches) seq_len = batches[0]['input_ids'].shape[1] # compute input shapes for pp stages input_shapes = compute_transformers_input_shapes( batches, meta_info={ 'sequence_parallel': self.megatron_config.sequence_parallel, 'hidden_size': self.model_config.hidden_size }) forward_backward_func = get_forward_backward_func() def loss_func(output, data, meta_info): if forward_only: return 1.0, {'vpreds': output.logits} responses = data['responses'] attention_mask = data['attention_mask'] values = data['values'] returns = data['returns'] response_length = responses.size(1) eos_mask = attention_mask[:, -response_length:] cliprange_value = self.config.cliprange_value vpreds = output.logits # (bs, sequence_length) vpreds = vpreds[:, -response_length - 1:-1] vf_loss, vf_clipfrac = core_algos.compute_value_loss(vpreds=vpreds, values=values, returns=returns, eos_mask=eos_mask, cliprange_value=cliprange_value) stats = { 'critic/vf_loss': vf_loss.detach().item(), 'critic/vf_clipfrac': vf_clipfrac.detach().item(), 'critic/vpred_mean': masked_mean(vpreds, eos_mask).detach().item(), } return vf_loss, stats def forward_step(batch_iter, model): batch = next(batch_iter) input_ids = batch['input_ids'] attention_mask = batch['attention_mask'] position_ids = batch['position_ids'] output = model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids) return output, partial(loss_func, data=batch, meta_info={}) # batch should be a list of batches inside micro-batches batch_generator = make_batch_generator(batches, vpp_size=len(self.critic_module)) # TODO: we may use the new schedule instead # for flash-attn: (seq_len, batch_size, hidden_size) = (mbs*seq_len, 1, hidden_size) if mpu.get_pipeline_model_parallel_world_size() > 1: losses_reduced = forward_backward_func( forward_step_func=forward_step, data_iterator=batch_generator, model=self.critic_module, num_microbatches=n_micro_batch, input_shapes=input_shapes, # must set for flash-attn sequence packing seq_length=self.config.ppo_micro_batch_size * seq_len, # no use when input_shapes was set hidden_size=self.model_config.hidden_size, # no use when input_shapes was set micro_batch_size=1, # no use when input_shapes was set forward_only=forward_only, ) else: losses_reduced = forward_backward_func( forward_step_func=forward_step, data_iterator=batch_generator, model=self.critic_module, num_microbatches=n_micro_batch, seq_length=self.config.ppo_micro_batch_size * seq_len, # in use for pp = 1 hidden_size=self.model_config.hidden_size, # in use for pp = 1 micro_batch_size=1, # in use for pp = 1 forward_only=forward_only, ) # loss_reduces contains the stats returned from loss_func return losses_reduced def update_critic(self, dataloader: Iterable[DataProto]): metrics = {} for data in dataloader: # data = data.batch.to(self.critic_module.device) self.critic_optimizer.zero_grad() # use use_contiguous_buffers_in_local_ddp and no overlap_dp_param_comm for chunk in self.critic_module: chunk.zero_grad_buffer(zero_buffer=(not self.critic_optimizer_config.use_distributed_optimizer)) metric_micro_batch = self.forward_backward_batch(data) update_successful, grad_norm, num_zeros_in_grad = self.critic_optimizer.step( self.megatron_config, self.megatron_config.timers) if update_successful: # allgather already execute in optimizer.step in new megatron pass else: raise NotImplementedError for metric in metric_micro_batch: append_to_dict(metrics, metric) # append the metric from this micro-batch to global metrics. # add empty cache after each compute torch.cuda.empty_cache() return metrics