# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocess the nq dataset to parquet format """ import re import os import json import datasets from verl.utils.hdfs_io import copy, makedirs import argparse def make_prefix(dp, template_type): question = dp['question'] context = dp['context'] # NOTE: also need to change reward_score/countdown.py if template_type == 'base': """This works for any base model""" prefix = f"""Answer the given question with some potentially useful context. \ You should analyze the question carefully, evaluate the given context (which may or may not be useful), and then generate an accurate and well-reasoned response. \ You should first have a reasoning process in mind and then provides the answer. \ Show your reasoning in tags and return the final answer in tags, for example Beijing . \ Question: {question} Context: {context} \n""" else: raise NotImplementedError return prefix def format_reference(retrieval_result): format_reference = '' for idx, doc_item in enumerate(retrieval_result): content = doc_item['contents'] title = content.split("\n")[0] text = "\n".join(content.split("\n")[1:]) format_reference += f"Doc {idx+1}(Title: {title}) {text}\n" return format_reference if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--local_dir', default='./data/nq_rag') parser.add_argument('--hdfs_dir', default=None) parser.add_argument('--template_type', type=str, default='base') parser.add_argument('--topk', type=int, default=3) parser.add_argument('--corpus_path', type=str, default='/home/peterjin/mnt/data/retrieval-corpus/wiki-18.jsonl') parser.add_argument('--train_retrieval_cache', type=str, default='/home/peterjin/rag_retrieval_cache/nq/e5_train_retrieval_cache_2048.json') parser.add_argument('--test_retrieval_cache', type=str, default='/home/peterjin/rag_retrieval_cache/nq/e5_test_retrieval_cache_10000.json') args = parser.parse_args() data_source = 'nq' dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq') train_dataset = dataset['train'] test_dataset = dataset['test'] # read retrieval cache print('reading retrieval cache...') retrieval_cache = json.load(open(args.train_retrieval_cache)) # test_retrieval_cache = json.load(open(args.test_retrieval_cache)) retrieval_cache.update(json.load(open(args.test_retrieval_cache))) # read corpus print('reading corpus...') corpus = {} with open(args.corpus_path) as f: readin = f.readlines() for line in readin: tmp = json.loads(line) corpus[tmp['id']] = tmp # add a column for the retrieval context def add_context(example): example['context'] = format_reference([corpus[docs["id"]] for docs in retrieval_cache[example['question']][:args.topk]]) return example train_dataset = train_dataset.map(function=add_context) test_dataset = test_dataset.map(function=add_context) # add a row to each data item that represents a unique id def make_map_fn(split): def process_fn(example, idx): example['question'] = example['question'].strip() if example['question'][-1] != '?': example['question'] += '?' question = make_prefix(example, template_type=args.template_type) solution = { "target": example['golden_answers'], } data = { "data_source": data_source, "prompt": [{ "role": "user", "content": question, }], "ability": "fact-reasoning", "reward_model": { "style": "rule", "ground_truth": solution }, "extra_info": { 'split': split, 'index': idx, } } return data return process_fn train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True) test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True) local_dir = args.local_dir hdfs_dir = args.hdfs_dir train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet')) test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet')) if hdfs_dir is not None: makedirs(hdfs_dir) copy(src=local_dir, dst=hdfs_dir)