# Copyright 2024 Bytedance Ltd. and/or its affiliates # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import torch from torch import nn from transformers import LlamaConfig from megatron.core import ModelParallelConfig from .parallel_attention import ParallelLlamaAttention, ParallelLlamaAttentionRmPad from .parallel_mlp import ParallelLlamaMLP from .parallel_rmsnorm import ParallelLlamaRMSNorm class ParallelLlamaDecoderLayer(nn.Module): def __init__(self, config: LlamaConfig, megatron_config: ModelParallelConfig): super().__init__() self.hidden_size = config.hidden_size self.self_attn = ParallelLlamaAttention(config=config, megatron_config=megatron_config) self.mlp = ParallelLlamaMLP(config, megatron_config=megatron_config) self.input_layernorm = ParallelLlamaRMSNorm(config, megatron_config) self.post_attention_layernorm = ParallelLlamaRMSNorm(config, megatron_config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Note: sequence parallel is hidden inside ColumnParallelLinear # reduce scatter is hidden inside RowParallelLinear # Self Attention hidden_states = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, ) # TODO: add sequence parallel operator reduce_scatter here hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) # TODO: add sequence parallel operator all_gather here hidden_states = self.mlp(hidden_states) # TODO: add sequence parallel operator reduce_scatter here hidden_states = residual + hidden_states outputs = hidden_states return outputs class ParallelLlamaDecoderLayerRmPad(nn.Module): def __init__(self, config: LlamaConfig, megatron_config: ModelParallelConfig): super().__init__() self.config = config self.megatron_config = megatron_config self.hidden_size = config.hidden_size self.self_attn = ParallelLlamaAttentionRmPad(config=config, megatron_config=megatron_config) self.mlp = ParallelLlamaMLP(config, megatron_config=megatron_config) self.input_layernorm = ParallelLlamaRMSNorm(config, megatron_config) self.post_attention_layernorm = ParallelLlamaRMSNorm(config, megatron_config) def forward( self, hidden_states: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, sequence_length: int = None, indices: torch.Tensor = None, cu_seqlens: int = None, max_seqlen_in_batch: int = None ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states # (total_nnz // sp, 1, hidden_size) hidden_states = self.input_layernorm(hidden_states) # Self Attention # (total_nnz // sp, 1, hidden_size) -> all-gather (total_nnz, 1, hidden_size) # -> col + row -> reduce-scatter -> (total_nnz // sp, 1, hidden_size) hidden_states = self.self_attn(hidden_states=hidden_states, position_ids=position_ids, sequence_length=sequence_length, indices=indices, cu_seqlens=cu_seqlens, max_seqlen_in_batch=max_seqlen_in_batch) hidden_states = residual + hidden_states # Fully Connected # shape changes same as attn residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = hidden_states return outputs