# Copyright 2024 Bytedance Ltd. and/or its affiliates # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from megatron.core import parallel_state as mpu from megatron.core import tensor_parallel from megatron.core import ModelParallelConfig from torch import nn from transformers.activations import ACT2FN from verl.models.llama.megatron.layers.parallel_linear import MergedColumnParallelLinear from verl.utils.megatron import tensor_parallel as tp_utils class ParallelLlamaMLP(nn.Module): def __init__(self, config, megatron_config: ModelParallelConfig = None) -> None: super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size # The weight is only [hidden_size, intermediate_size // model_parallel_world_size] column_kwargs = tp_utils.get_default_kwargs_for_column_parallel_linear() row_kwargs = tp_utils.get_default_kwargs_for_row_parallel_linear() if megatron_config is not None: assert column_kwargs.get('config', False), 'must have ModelParallelConfig' assert row_kwargs.get('config', False), 'must have ModelParallelConfig' tp_utils.update_kwargs_with_config(row_kwargs, megatron_config) tp_utils.update_kwargs_with_config(column_kwargs, megatron_config) tp_size = mpu.get_tensor_model_parallel_world_size() self.gate_up_proj = MergedColumnParallelLinear( input_size=self.hidden_size, gate_ouput_size=self.intermediate_size, up_output_size=self.intermediate_size, bias=False, gather_output=False, skip_bias_add=False, **column_kwargs, ) self.gate_size = self.intermediate_size // tp_size self.down_proj = tensor_parallel.RowParallelLinear(input_size=self.intermediate_size, output_size=self.hidden_size, bias=False, input_is_parallel=True, skip_bias_add=False, **row_kwargs) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): gate_up = self.gate_up_proj(x)[0] gate, up = gate_up.split(self.gate_size, dim=-1) return self.down_proj(self.act_fn(gate) * up)[0]