data_name=nq_hotpotqa_train export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 export DATA_DIR=data/${data_name} # first download the data from https://huggingface.co/datasets/PeterJinGo/nq_hotpotqa_train WAND_PROJECT="Search-R1" RAY_DASHBOARD_ADDRESS="http://xx.xx.xx.xx:8265" # your head node address N_NODES=4 export BASE_MODEL='Qwen/Qwen2.5-32B' export EXPERIMENT_NAME=${train_data}-${test_data}-search-r1-ppo-qwen2.5-32b-em-multinode-${N_NODES} # set -x export VLLM_ATTENTION_BACKEND=XFORMERS ulimit -n 65535 ray job submit --address=$RAY_DASHBOARD_ADDRESS \ --runtime-env=verl/trainer/runtime_env.yaml \ --no-wait \ -- \ python3 -m verl.trainer.main_ppo \ data.train_files=$DATA_DIR/train.parquet \ data.val_files=$DATA_DIR/test.parquet \ data.train_data_num=null \ data.val_data_num=null \ data.train_batch_size=512 \ data.val_batch_size=256 \ data.max_prompt_length=4096 \ data.max_response_length=500 \ data.max_start_length=2048 \ data.max_obs_length=500 \ data.shuffle_train_dataloader=True \ algorithm.adv_estimator=gae \ actor_rollout_ref.model.path=$BASE_MODEL \ actor_rollout_ref.actor.optim.lr=2e-7 \ actor_rollout_ref.model.enable_gradient_checkpointing=true \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.optim.lr_warmup_steps_ratio=0.285 \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size=32 \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.grad_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \ actor_rollout_ref.rollout.log_prob_micro_batch_size=32 \ actor_rollout_ref.rollout.tensor_model_parallel_size=2 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.5 \ actor_rollout_ref.ref.log_prob_micro_batch_size=32 \ actor_rollout_ref.ref.fsdp_config.param_offload=False \ actor_rollout_ref.rollout.n_agent=1 \ actor_rollout_ref.rollout.temperature=1 \ actor_rollout_ref.rollout.top_p=1.0 \ actor_rollout_ref.actor.state_masking=true \ critic.optim.lr=1e-5 \ critic.model.use_remove_padding=True \ critic.optim.lr_warmup_steps_ratio=0.015 \ critic.model.path=$BASE_MODEL \ critic.model.enable_gradient_checkpointing=true \ critic.ppo_micro_batch_size=32 \ critic.model.fsdp_config.param_offload=False \ critic.model.fsdp_config.grad_offload=False \ critic.model.fsdp_config.optimizer_offload=True \ algorithm.kl_ctrl.kl_coef=0.001 \ algorithm.no_think_rl=false \ trainer.critic_warmup=0 \ trainer.logger=['wandb'] \ +trainer.val_only=false \ +trainer.val_before_train=true \ trainer.default_hdfs_dir=null \ trainer.n_gpus_per_node=8 \ trainer.nnodes=$N_NODES \ trainer.save_freq=100 \ trainer.test_freq=100 \ trainer.project_name=$WAND_PROJECT \ trainer.experiment_name=$EXPERIMENT_NAME \ trainer.total_epochs=15 \ trainer.total_training_steps=1005 \ trainer.default_hdfs_dir=null \ trainer.default_local_dir=verl_checkpoints/$EXPERIMENT_NAME \ max_turns=4 \ retriever.url="http://127.0.0.1:8000/retrieve" \ retriever.topk=3 \ 2>&1 | tee $EXPERIMENT_NAME.log