# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A unified tracking interface that supports logging data to different backend """ import dataclasses from enum import Enum from functools import partial from pathlib import Path from typing import List, Union, Dict, Any class Tracking(object): supported_backend = ['wandb', 'mlflow', 'console'] def __init__(self, project_name, experiment_name, default_backend: Union[str, List[str]] = 'console', config=None): if isinstance(default_backend, str): default_backend = [default_backend] for backend in default_backend: if backend == 'tracking': import warnings warnings.warn("`tracking` logger is deprecated. use `wandb` instead.", DeprecationWarning) else: assert backend in self.supported_backend, f'{backend} is not supported' self.logger = {} if 'tracking' in default_backend or 'wandb' in default_backend: import wandb import os WANDB_API_KEY = os.environ.get("WANDB_API_KEY", None) if WANDB_API_KEY: wandb.login(key=WANDB_API_KEY) wandb.init(project=project_name, name=experiment_name, config=config) self.logger['wandb'] = wandb if 'mlflow' in default_backend: import mlflow mlflow.start_run(run_name=experiment_name) mlflow.log_params(_compute_mlflow_params_from_objects(config)) self.logger['mlflow'] = _MlflowLoggingAdapter() if 'console' in default_backend: from verl.utils.logger.aggregate_logger import LocalLogger self.console_logger = LocalLogger(print_to_console=True) self.logger['console'] = self.console_logger def log(self, data, step, backend=None): for default_backend, logger_instance in self.logger.items(): if backend is None or default_backend in backend: logger_instance.log(data=data, step=step) class _MlflowLoggingAdapter: def log(self, data, step): import mlflow mlflow.log_metrics(metrics=data, step=step) def _compute_mlflow_params_from_objects(params) -> Dict[str, Any]: if params is None: return {} return _flatten_dict(_transform_params_to_json_serializable(params, convert_list_to_dict=True), sep='/') def _transform_params_to_json_serializable(x, convert_list_to_dict: bool): _transform = partial(_transform_params_to_json_serializable, convert_list_to_dict=convert_list_to_dict) if dataclasses.is_dataclass(x): return _transform(dataclasses.asdict(x)) if isinstance(x, dict): return {k: _transform(v) for k, v in x.items()} if isinstance(x, list): if convert_list_to_dict: return {'list_len': len(x)} | {f'{i}': _transform(v) for i, v in enumerate(x)} else: return [_transform(v) for v in x] if isinstance(x, Path): return str(x) if isinstance(x, Enum): return x.value return x def _flatten_dict(raw: Dict[str, Any], *, sep: str) -> Dict[str, Any]: import pandas as pd ans = pd.json_normalize(raw, sep=sep).to_dict(orient='records')[0] assert isinstance(ans, dict) return ans