# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Note that we don't combine the main with ray_trainer as ray_trainer is used by other main. """ from verl import DataProto import torch from verl.utils.reward_score import qa_em from verl.trainer.ppo.ray_trainer import RayPPOTrainer import re import numpy as np def _select_rm_score_fn(data_source): if data_source in ['nq', 'triviaqa', 'popqa', 'hotpotqa', '2wikimultihopqa', 'musique', 'bamboogle']: return qa_em.compute_score_em else: raise NotImplementedError class RewardManager(): """The reward manager. """ def __init__(self, tokenizer, num_examine, format_score=0.) -> None: self.tokenizer = tokenizer self.num_examine = num_examine # the number of batches of decoded responses to print to the console self.format_score = format_score def __call__(self, data: DataProto): """We will expand this function gradually based on the available datasets""" # If there is rm score, we directly return rm score. Otherwise, we compute via rm_score_fn if 'rm_scores' in data.batch.keys(): return data.batch['rm_scores'] reward_tensor = torch.zeros_like(data.batch['responses'], dtype=torch.float32) # all_scores = [] already_print_data_sources = {} for i in range(len(data)): data_item = data[i] # DataProtoItem prompt_ids = data_item.batch['prompts'] prompt_length = prompt_ids.shape[-1] valid_prompt_length = data_item.batch['attention_mask'][:prompt_length].sum() valid_prompt_ids = prompt_ids[-valid_prompt_length:] response_ids = data_item.batch['responses'] valid_response_length = data_item.batch['attention_mask'][prompt_length:].sum() valid_response_ids = response_ids[:valid_response_length] # decode sequences = torch.cat((valid_prompt_ids, valid_response_ids)) sequences_str = self.tokenizer.decode(sequences) ground_truth = data_item.non_tensor_batch['reward_model']['ground_truth'] # select rm_score data_source = data_item.non_tensor_batch['data_source'] compute_score_fn = _select_rm_score_fn(data_source) score = compute_score_fn(solution_str=sequences_str, ground_truth=ground_truth, format_score=self.format_score) reward_tensor[i, valid_response_length - 1] = score # all_scores.append(score) if data_source not in already_print_data_sources: already_print_data_sources[data_source] = 0 if already_print_data_sources[data_source] < self.num_examine: already_print_data_sources[data_source] += 1 print(sequences_str) # print(f"[DEBUG] all_scores: {all_scores}") # print(f"[DEBUG] all_scores shape: {np.array(all_scores).shape}") # print(f"[DEBUG] all_scores mean: {np.mean(all_scores)}") # print(f"[DEBUG] all_scores max: {np.max(all_scores)}") # print(f"[DEBUG] all_scores min: {np.min(all_scores)}") # print(f"[DEBUG] all_scores std: {np.std(all_scores)}") return reward_tensor import ray import hydra @hydra.main(config_path='config', config_name='ppo_trainer', version_base=None) def main(config): if not ray.is_initialized(): # this is for local ray cluster ray.init(runtime_env={'env_vars': {'TOKENIZERS_PARALLELISM': 'true', 'NCCL_DEBUG': 'WARN'}}) ray.get(main_task.remote(config)) @ray.remote def main_task(config): from verl.utils.fs import copy_local_path_from_hdfs from transformers import AutoTokenizer # print initial config from pprint import pprint from omegaconf import OmegaConf pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values OmegaConf.resolve(config) # env_class = ENV_CLASS_MAPPING[config.env.name] # download the checkpoint from hdfs local_path = copy_local_path_from_hdfs(config.actor_rollout_ref.model.path) # instantiate tokenizer from verl.utils import hf_tokenizer tokenizer = hf_tokenizer(local_path) # define worker classes if config.actor_rollout_ref.actor.strategy == 'fsdp': assert config.actor_rollout_ref.actor.strategy == config.critic.strategy from verl.workers.fsdp_workers import ActorRolloutRefWorker, CriticWorker from verl.single_controller.ray import RayWorkerGroup ray_worker_group_cls = RayWorkerGroup elif config.actor_rollout_ref.actor.strategy == 'megatron': assert config.actor_rollout_ref.actor.strategy == config.critic.strategy from verl.workers.megatron_workers import ActorRolloutRefWorker, CriticWorker from verl.single_controller.ray.megatron import NVMegatronRayWorkerGroup ray_worker_group_cls = NVMegatronRayWorkerGroup else: raise NotImplementedError from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role role_worker_mapping = { Role.ActorRollout: ray.remote(ActorRolloutRefWorker), Role.Critic: ray.remote(CriticWorker), Role.RefPolicy: ray.remote(ActorRolloutRefWorker), } global_pool_id = 'global_pool' resource_pool_spec = { global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes, } mapping = { Role.ActorRollout: global_pool_id, Role.Critic: global_pool_id, Role.RefPolicy: global_pool_id, } # we should adopt a multi-source reward function here # - for rule-based rm, we directly call a reward score # - for model-based rm, we call a model # - for code related prompt, we send to a sandbox if there are test cases # - finally, we combine all the rewards together # - The reward type depends on the tag of the data if config.reward_model.enable: if config.reward_model.strategy == 'fsdp': from verl.workers.fsdp_workers import RewardModelWorker elif config.reward_model.strategy == 'megatron': from verl.workers.megatron_workers import RewardModelWorker else: raise NotImplementedError role_worker_mapping[Role.RewardModel] = ray.remote(RewardModelWorker) mapping[Role.RewardModel] = global_pool_id reward_fn = RewardManager(tokenizer=tokenizer, num_examine=0) # Note that we always use function-based RM for validation val_reward_fn = RewardManager(tokenizer=tokenizer, num_examine=1) resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping) trainer = RayPPOTrainer(config=config, tokenizer=tokenizer, role_worker_mapping=role_worker_mapping, resource_pool_manager=resource_pool_manager, ray_worker_group_cls=ray_worker_group_cls, reward_fn=reward_fn, val_reward_fn=val_reward_fn, ) trainer.init_workers() trainer.fit() if __name__ == '__main__': main()