# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocess the nq dataset to parquet format """ import re import os import datasets from verl.utils.hdfs_io import copy, makedirs import argparse def make_prefix(dp, template_type): question = dp['question'] # NOTE: also need to change reward_score/countdown.py if template_type == 'base': """This works for any base model""" prefix = f"""Answer the given question. \ You must conduct reasoning inside and first every time you get new information. \ After reasoning, if you find you lack some knowledge, you can call a search engine by query and it will return the top searched results between and . \ You can search as many times as your want. \ If you find no further external knowledge needed, you can directly provide the answer inside and , without detailed illustrations. For example, Beijing . Question: {question}\n""" else: raise NotImplementedError return prefix if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--local_dir', default='./data/nq_search') parser.add_argument('--hdfs_dir', default=None) parser.add_argument('--template_type', type=str, default='base') args = parser.parse_args() data_source = 'nq' dataset = datasets.load_dataset('RUC-NLPIR/FlashRAG_datasets', 'nq') train_dataset = dataset['train'] test_dataset = dataset['test'] # add a row to each data item that represents a unique id def make_map_fn(split): def process_fn(example, idx): example['question'] = example['question'].strip() if example['question'][-1] != '?': example['question'] += '?' question = make_prefix(example, template_type=args.template_type) solution = { "target": example['golden_answers'], } data = { "data_source": data_source, "prompt": [{ "role": "user", "content": question, }], "ability": "fact-reasoning", "reward_model": { "style": "rule", "ground_truth": solution }, "extra_info": { 'split': split, 'index': idx, } } return data return process_fn train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True) test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True) local_dir = args.local_dir hdfs_dir = args.hdfs_dir train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet')) test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet')) if hdfs_dir is not None: makedirs(hdfs_dir) copy(src=local_dir, dst=hdfs_dir)