# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Megatron Reward Model. """ from tensordict import TensorDict from functools import partial from verl import DataProto from verl.utils.torch_functional import logprobs_from_logits import torch import torch import torch.distributed from verl.utils.torch_functional import get_eos_mask, pad_sequence_to_length from verl.utils.megatron.pipeline_parallel import (compute_transformers_input_shapes, make_batch_generator) from verl import DataProto from verl.utils.torch_functional import logprobs_from_logits, broadcast_dict_tensor, split_dict_tensor_into_batches from verl.utils.torch_dtypes import PrecisionType from verl.workers.reward_model.base import BasePPORewardModel from verl.utils.megatron import sequence_parallel as sp_utils from megatron.core import parallel_state as mpu from megatron.core.pipeline_parallel import get_forward_backward_func class MegatronRewardModel(BasePPORewardModel): def __init__(self, config, model_config, reward_model_module: torch.nn.ModuleList, megatron_config, sft_tokenizer=None, rm_tokenizer=None): self.config = config self.reward_model_module = reward_model_module self.megatron_config = megatron_config self.model_config = model_config self.device = 'cuda' self.sft_tokenizer = sft_tokenizer self.rm_tokenizer = rm_tokenizer self.use_different_tokenizer = rm_tokenizer is not None if self.config.param_offload: self.offload_params_to_cpu() def re_encode_by_rm_tokenizer(self, data: DataProto) -> DataProto: assert self.use_different_tokenizer, 're-encode need rm tokenizer not be None!' # need to use rm tokenizer to re-generate input_ids, attention_mask and position_ids # 1. remove pad for each sequence # 2. decode by sft_tokenizer, remove sft system prompts # 3. encode by rm_tokenizer with rm system prompts, get rm_input_ids # 4. generate attention_mask and position_ids input_ids = data.batch['input_ids'] # (bs, seq_len) attention_mask = data.batch['attention_mask'] position_ids = data.batch['position_ids'] ori_values = {'input_ids': input_ids, 'attention_mask': attention_mask, 'position_ids': position_ids} ori_bs, ori_seqlen = input_ids.size(0), input_ids.size(1) input_ids_for_rm = [] attention_mask_for_rm = [] position_ids_for_rm = [] print_decode = True ori_seqlen = ori_seqlen + 128 for id, mask in zip(input_ids, attention_mask): # 1. remove pad for each sequence non_zero_indices = torch.nonzero(mask).view(-1) begin_pos, end_pos = non_zero_indices[0].item(), non_zero_indices[-1].item() valid_id = id[begin_pos:end_pos + 1] # 2. decode by sft_tokenizer, remove sft system prompts decode_result = self.sft_tokenizer.decode(valid_id) # workaround decode_with_rm_chat = decode_result.replace("<|user|>\n", "[INST] ").replace( "\n<|assistant|>\n", " [/INST]").replace(" \n<|assistant|>\n", " [/INST]") + "" print(f"decode_with_rm_chat: {decode_with_rm_chat}") if print_decode and torch.distributed.get_rank() == 0: # only print first decode result print(f'device {torch.cuda.current_device()}: sft decode result:\n{decode_result}\n \ \ndevice {torch.cuda.current_device()}: sft decode result with rm chat template:\n{decode_with_rm_chat}\n\n' ) print_decode = False # 3. encode by rm_tokenizer rm_input_ids = self.rm_tokenizer(decode_with_rm_chat, return_tensors='pt')['input_ids'][0].to(input_ids.device) # 4. generate attention_mask and position_ids rm_attention_mask = torch.ones_like(rm_input_ids, device=input_ids.device) cur_seqlen = rm_input_ids.shape[-1] # NOTE(gh): the later reward compute will process the shape (bs, seqlen_pad_128) if cur_seqlen > ori_seqlen: print(f'warninig: rm encode seqlen {cur_seqlen} > sft encode seqlen {ori_seqlen}') rm_input_ids = rm_input_ids[:ori_seqlen] rm_attention_mask = rm_attention_mask[:ori_seqlen] else: # right padding rm_input_ids = pad_sequence_to_length(rm_input_ids, ori_seqlen, self.rm_tokenizer.pad_token_id) rm_attention_mask = pad_sequence_to_length(rm_attention_mask, ori_seqlen, 0) rm_position_ids = torch.arange(0, ori_seqlen, device=input_ids.device) input_ids_for_rm.append(torch.unsqueeze(rm_input_ids, dim=0)) attention_mask_for_rm.append(torch.unsqueeze(rm_attention_mask, dim=0)) position_ids_for_rm.append(torch.unsqueeze(rm_position_ids, dim=0)) input_ids_for_rm = torch.cat(input_ids_for_rm, dim=0) attention_mask_for_rm = torch.cat(attention_mask_for_rm, dim=0) position_ids_for_rm = torch.cat(position_ids_for_rm, dim=0) # (bs, seqlen) will not change, but input_ids, attention_mask and position_ids will change # NOTE(gh): need to replace into origin values after compute reward! data.batch['input_ids'] = input_ids_for_rm data.batch['attention_mask'] = attention_mask_for_rm data.batch['position_ids'] = position_ids_for_rm return data, ori_values @torch.no_grad() def compute_reward(self, data: DataProto) -> DataProto: if self.config.param_offload: self.load_params_to_cuda() if self.use_different_tokenizer: data, ori_values = self.re_encode_by_rm_tokenizer(data) input_ids = data.batch['input_ids'] # (bs, seq_len') attention_mask = data.batch['attention_mask'] position_ids = data.batch['position_ids'] responses = data.batch['responses'] batch_size = responses.size(0) response_length = responses.size(1) with torch.no_grad(): output = self.forward_batch(data) if mpu.is_pipeline_last_stage(ignore_virtual=True): logits = torch.cat([o['logits'] for o in output], dim=0) else: logits = torch.empty( (input_ids.shape[0], input_ids.shape[1]), dtype=torch.bfloat16, # TODO(sgm): check why is bfloat16 device=input_ids.device) # broadcast across pp ranks torch.distributed.broadcast(tensor=logits, src=mpu.get_pipeline_model_parallel_last_rank(), group=mpu.get_pipeline_model_parallel_group(), async_op=False) # (bs, seqlen', hidden_size) -> (bs, seqlen', 1) -> (bs, seqlen') token_level_rewards = logits # find the last token reward ends = attention_mask.cumsum(dim=-1).argmax(dim=-1).view(-1, 1) # (bs, 1) rewards = torch.gather(token_level_rewards, dim=1, index=ends) # (bs, 1) if self.use_different_tokenizer: data.batch.update(ori_values) input_ids = ori_values['input_ids'] attention_mask = ori_values['attention_mask'] position_ids = ori_values['position_ids'] token_level_rewards = rewards.expand(attention_mask.shape[0], attention_mask.shape[1]) # (bs, ori_seqlen) # assign last valid token reward to ori position eos_mask_idx = torch.argmax(position_ids * attention_mask, dim=-1) # (bs,) eos_mask = torch.zeros_like(attention_mask) eos_mask[torch.arange(batch_size), eos_mask_idx] = 1. token_level_rewards = token_level_rewards * eos_mask token_level_rewards = token_level_rewards[:, -response_length:] if self.config.param_offload: self.offload_params_to_cpu() else: # add empty cache after each compute torch.cuda.empty_cache() batch = TensorDict({'rm_scores': token_level_rewards}, batch_size=input_ids.shape[0]) return DataProto(batch=batch) def forward_batch(self, data: DataProto): """ We assume: - The model takes input: (input_ids, attention_mask, position_ids). No rmpad for the input - The communication shape is (total_nnz_pad_to_sp // tp_size, 1, hidden_size) if sequence parallel is enabled """ # broadcast from last pp rank to all other pp ranks # TODO: actually, we just need to control the sampling order. data.batch = data.batch.contiguous() broadcast_dict_tensor(data.batch, src=mpu.get_pipeline_model_parallel_last_rank(), group=mpu.get_pipeline_model_parallel_group()) # split into micro-batches if self.config is not None and 'ppo_micro_batch_size' in self.config: infer_batch_size = self.config.ppo_micro_batch_size else: infer_batch_size = data.batch.batch_size[0] data.batch['attention_mask'] = data.batch['attention_mask'].to(bool) batches = split_dict_tensor_into_batches(data.batch, batch_size=infer_batch_size) n_micro_batch = len(batches) seq_len = batches[0]['input_ids'].shape[1] # compute input shapes for pp stages input_shapes = compute_transformers_input_shapes( batches, meta_info={ 'sequence_parallel': self.megatron_config.sequence_parallel, 'hidden_size': self.model_config.hidden_size }) # compute input shapes for pp stages forward_backward_func = get_forward_backward_func() def loss_func(output): return 1., {'logits': output.logits} def forward_step(batch_iter, model): batch = next(batch_iter) input_ids = batch['input_ids'] attention_mask = batch['attention_mask'] position_ids = batch['position_ids'] output = model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids) return output, loss_func # batch should be a list of batches inside micro-batches batch_generator = make_batch_generator(batches, vpp_size=len(self.reward_model_module)) # TODO: we may use the new schedule instead # for flash-attn: (seq_len, batch_size, hidden_size) = (mbs*seq_len, 1, hidden_size) if mpu.get_pipeline_model_parallel_world_size() > 1: losses_reduced = forward_backward_func( forward_step_func=forward_step, data_iterator=batch_generator, model=self.reward_model_module, num_microbatches=n_micro_batch, input_shapes=input_shapes, # must set for flash-attn sequence packing seq_length=infer_batch_size * seq_len, # no use when input_shapes was set hidden_size=self.model_config.hidden_size, # no use when input_shapes was set micro_batch_size=1, # no use when input_shapes was set forward_only=True, ) else: losses_reduced = forward_backward_func( forward_step_func=forward_step, data_iterator=batch_generator, model=self.reward_model_module, num_microbatches=n_micro_batch, seq_length=infer_batch_size * seq_len, # in use for pp = 1 hidden_size=self.model_config.hidden_size, # in use for pp = 1 micro_batch_size=1, # in use for pp = 1 forward_only=True, ) # loss_reduces contains the stats returned from loss_func return losses_reduced def offload_params_to_cpu(self): if self.device == 'cuda': for reward_model_module in self.reward_model_module: for name, param in reward_model_module.named_parameters(): param.data = param.data.to('cpu', non_blocking=True) self.device = 'cpu' torch.cuda.empty_cache() def load_params_to_cuda(self): if self.device == 'cpu': for reward_model_module in self.reward_model_module: for name, param in reward_model_module.named_parameters(): param.data = param.data.to(torch.cuda.current_device(), non_blocking=True) self.device = 'cuda'