# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Single Process Actor """ import itertools from typing import Iterable, Tuple import torch from torch import nn from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from verl import DataProto from verl.trainer.ppo import core_algos from verl.workers.actor import BasePPOActor from verl.utils.py_functional import append_to_dict from verl.utils.torch_functional import logprobs_from_logits, masked_mean from verl.utils.ulysses import ulysses_pad_and_slice_inputs, gather_outpus_and_unpad from verl.utils.seqlen_balancing import rearrange_micro_batches, get_reverse_idx import verl.utils.torch_functional as verl_F from flash_attn.bert_padding import pad_input, unpad_input, rearrange, index_first_axis __all__ = ['DataParallelPPOActor'] class DataParallelPPOActor(BasePPOActor): def __init__( self, config, actor_module: nn.Module, actor_optimizer: torch.optim.Optimizer = None, ): """When optimizer is None, it is Reference Policy""" super().__init__(config) self.actor_module = actor_module self.actor_optimizer = actor_optimizer self.use_remove_padding = self.config.get('use_remove_padding', False) print(f'Actor use_remove_padding={self.use_remove_padding}') self.ulysses_sequence_parallel_size = self.config.ulysses_sequence_parallel_size self.use_ulysses_sp = self.ulysses_sequence_parallel_size > 1 self.compute_entropy_from_logits = torch.compile(verl_F.entropy_from_logits, dynamic=True) def _forward_micro_batch(self, micro_batch, temperature) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns: entropy: # (bs, response_len) log_probs: # (bs, response_len) """ response_length = micro_batch['responses'].size(-1) with torch.autocast(device_type='cuda', dtype=torch.bfloat16): input_ids = micro_batch['input_ids'] batch_size, seqlen = input_ids.shape attention_mask = micro_batch['attention_mask'] position_ids = micro_batch['position_ids'] if self.use_remove_padding: input_ids_rmpad, indices, *_ = unpad_input(input_ids.unsqueeze(-1), attention_mask) # input_ids_rmpad (total_nnz, ...) input_ids_rmpad = input_ids_rmpad.transpose(0, 1) # (1, total_nnz) # unpad the position_ids to align the rotary position_ids_rmpad = index_first_axis(rearrange(position_ids.unsqueeze(-1), "b s ... -> (b s) ..."), indices).transpose(0, 1) # for compute the log_prob input_ids_rmpad_rolled = torch.roll(input_ids_rmpad, shifts=-1, dims=1) # (1, total_nnz) # pad and slice the inputs if sp > 1 if self.use_ulysses_sp: input_ids_rmpad, position_ids_rmpad, pad_size = ulysses_pad_and_slice_inputs(input_ids_rmpad, \ position_ids_rmpad, \ sp_size=self.ulysses_sequence_parallel_size) input_ids_rmpad_rolled, _, _ = ulysses_pad_and_slice_inputs(input_ids_rmpad_rolled, None, self.ulysses_sequence_parallel_size) input_ids_rmpad_rolled = input_ids_rmpad_rolled.squeeze(0) # ((total_nnz / sp) + pad) # only pass input_ids and position_ids to enable flash_attn_varlen output = self.actor_module(input_ids=input_ids_rmpad, attention_mask=None, position_ids=position_ids_rmpad, use_cache=False) # prevent model thinks we are generating logits_rmpad = output.logits.squeeze(0) # (total_nnz, vocab_size) logits_rmpad.div_(temperature) # compute entropy entropy_rmpad = self.compute_entropy_from_logits(logits_rmpad) # ((total_nnz / sp) + pad) # if use_sp: ((total_nnz / sp) + pad) ; if not use_sp: (batch, seqlen) log_probs = logprobs_from_logits(logits=logits_rmpad, labels=input_ids_rmpad_rolled) # gather log_prob if sp > 1 if self.use_ulysses_sp: # gather and unpad for the ulysses sp log_probs = gather_outpus_and_unpad(log_probs, gather_dim=0, unpad_dim=0, padding_size=pad_size) entropy_rmpad = gather_outpus_and_unpad(entropy_rmpad, gather_dim=0, unpad_dim=0, padding_size=pad_size) # pad back to (bsz, seqlen) full_entropy = pad_input(hidden_states=entropy_rmpad.unsqueeze(-1), indices=indices, batch=batch_size, seqlen=seqlen) full_log_probs = pad_input(hidden_states=log_probs.unsqueeze(-1), indices=indices, batch=batch_size, seqlen=seqlen) # only return response part: entropy = full_entropy.squeeze(-1)[:, -response_length - 1:-1] # (bsz, response_length) log_probs = full_log_probs.squeeze(-1)[:, -response_length - 1:-1] # (bsz, response_length) else: # not using rmpad and no ulysses sp output = self.actor_module(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, use_cache=False) # prevent model thinks we are generating logits = output.logits logits.div_(temperature) logits = logits[:, -response_length - 1:-1] # (bsz, response_length) log_probs = logprobs_from_logits(logits, micro_batch['responses']) entropy = verl_F.entropy_from_logits(logits) # (bsz, response_length) return entropy, log_probs def _optimizer_step(self): assert self.config.grad_clip is not None if isinstance(self.actor_module, FSDP): grad_norm = self.actor_module.clip_grad_norm_(max_norm=self.config.grad_clip) else: grad_norm = torch.nn.utils.clip_grad_norm_(self.actor_module.parameters(), max_norm=self.config.grad_clip) self.actor_optimizer.step() return grad_norm def compute_log_prob(self, data: DataProto) -> torch.Tensor: """Compute the log probability of the responses given input_ids, attention_mask and position_ids Args: data (DataProto): a DataProto containing keys ``input_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. Note that input_ids is the concatenation of prompt and response. Note that ``sequence_length = prompt_length + response_length``. ``attention_mask``: tensor of shape [batch_size, sequence_length]. torch.int64. ``position_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. ``responses``: tensor of shape [batch_size, response_length]. torch.int64. Returns: torch.Tensor: the log_prob tensor """ # set to eval self.actor_module.eval() micro_batch_size = data.meta_info['micro_batch_size'] temperature = data.meta_info['temperature'] # temperature must be in the data.meta_info to avoid slient error use_dynamic_bsz = data.meta_info['use_dynamic_bsz'] select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids'] batch = data.select(batch_keys=select_keys).batch if use_dynamic_bsz: # split using dynamic bsz max_token_len = data.meta_info['max_token_len'] * self.ulysses_sequence_parallel_size micro_batches, indices = rearrange_micro_batches(batch=batch, max_token_len=max_token_len) else: micro_batches = batch.split(micro_batch_size) log_probs_lst = [] for micro_batch in micro_batches: with torch.no_grad(): _, log_probs = self._forward_micro_batch(micro_batch, temperature=temperature) log_probs_lst.append(log_probs) log_probs = torch.concat(log_probs_lst, dim=0) if use_dynamic_bsz: indices = list(itertools.chain.from_iterable(indices)) assert len(indices) == log_probs.size(0), f"{len(indices)} vs. {log_probs.size()}" revert_indices = torch.tensor(get_reverse_idx(indices), dtype=torch.long) log_probs = log_probs[revert_indices] return log_probs def update_policy(self, data: DataProto): # make sure we are in training mode self.actor_module.train() assert self.config.ppo_mini_batch_size % self.config.ppo_micro_batch_size == 0 self.gradient_accumulation = self.config.ppo_mini_batch_size // self.config.ppo_micro_batch_size temperature = data.meta_info['temperature'] # temperature must be in the data.meta_info to avoid slient error select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids', 'old_log_probs', 'advantages'] if self.config.state_masking: select_keys.append('loss_mask') if self.config.use_kl_loss: select_keys.append('ref_log_prob') batch = data.select(batch_keys=select_keys).batch # Split to make minibatch iterator for updating the actor # See PPO paper for details. https://arxiv.org/abs/1707.06347 dataloader = batch.split(self.config.ppo_mini_batch_size) metrics = {} for batch_idx, data in enumerate(dataloader): # split batch into micro_batches mini_batch = data if self.config.use_dynamic_bsz: max_token_len = self.config.ppo_max_token_len_per_gpu * self.ulysses_sequence_parallel_size micro_batches, _ = rearrange_micro_batches(batch=mini_batch, max_token_len=max_token_len) else: # split batch into micro_batches micro_batches = mini_batch.split(self.config.ppo_micro_batch_size) self.actor_optimizer.zero_grad() for data in micro_batches: data = data.cuda() # actor device is cpu when using offload responses = data['responses'] response_length = responses.size(1) attention_mask = data['attention_mask'] response_mask = attention_mask[:, -response_length:] if self.config.state_masking: response_mask = data['loss_mask'] old_log_prob = data['old_log_probs'] advantages = data['advantages'] clip_ratio = self.config.clip_ratio entropy_coeff = self.config.entropy_coeff # all return: (bsz, response_length) entropy, log_prob = self._forward_micro_batch(micro_batch=data, temperature=temperature) pg_loss, pg_clipfrac, ppo_kl = core_algos.compute_policy_loss(old_log_prob=old_log_prob, log_prob=log_prob, advantages=advantages, eos_mask=response_mask, cliprange=clip_ratio) # compute entropy loss from entropy entropy_loss = verl_F.masked_mean(entropy, response_mask) # compute policy loss policy_loss = pg_loss - entropy_loss * entropy_coeff if self.config.use_kl_loss: ref_log_prob = data['ref_log_prob'] # compute kl loss kld = core_algos.kl_penalty(logprob=log_prob, ref_logprob=ref_log_prob, kl_penalty=self.config.kl_loss_type) kl_loss = masked_mean(kld, response_mask) policy_loss = policy_loss + kl_loss * self.config.kl_loss_coef metrics['actor/kl_loss'] = kl_loss.detach().item() metrics['actor/kl_coef'] = self.config.kl_loss_coef loss = policy_loss / self.gradient_accumulation loss.backward() data = { 'actor/entropy_loss': entropy_loss.detach().item(), 'actor/pg_loss': pg_loss.detach().item(), 'actor/pg_clipfrac': pg_clipfrac.detach().item(), 'actor/ppo_kl': ppo_kl.detach().item(), } append_to_dict(metrics, data) grad_norm = self._optimizer_step() data = {'actor/grad_norm': grad_norm.detach().item()} append_to_dict(metrics, data) self.actor_optimizer.zero_grad() return metrics