# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Megatron Actor. In megatron actor, the differences are: 1. We only make minibatch Note that our model doesn't have to be `MegatronModule` because we don't share embedding in the last layer """ from functools import partial from typing import Iterable, Dict import torch from torch import nn import torch.distributed # from megatron import get_args from megatron.optimizer import DistributedOptimizer from verl.utils.megatron.optimizer_config import OptimizerConfig from megatron.core import parallel_state as mpu from megatron.core import ModelParallelConfig from megatron.core.pipeline_parallel import get_forward_backward_func # from megatron.core.optimizer import DistributedOptimizer from omegaconf import OmegaConf from verl.utils.megatron.tensor_parallel import vocab_parallel_compute_entropy_loss, vocab_parallel_log_probs_from_logits from verl.utils.megatron.pipeline_parallel import (compute_transformers_input_shapes, make_batch_generator) from verl import DataProto from verl.trainer.ppo import core_algos from verl.workers.actor import BasePPOActor from verl.utils.py_functional import append_to_dict from verl.utils.torch_functional import logprobs_from_logits, broadcast_dict_tensor, split_dict_tensor_into_batches __all__ = ['MegatronPPOActor'] class MegatronPPOActor(BasePPOActor): def __init__(self, config, model_config, megatron_config: ModelParallelConfig, actor_module: nn.ModuleList, actor_optimizer: DistributedOptimizer, actor_optimizer_config: OptimizerConfig): """MeagtronPPOActor class. This class implements the simple PPO logics when the model is built with Megatron. Args: config (OmegaConf): the basic config that contains the hyper-parameters of PPO Actor. It must contain ``ppo_micro_batch_size``: minibatch size when updating ppo. ``ppo_mini_batch_size``: minibatch size when updating ppo using the batch data. ``ppo_epochs``: number of epochs to update the actor using the batch data. ``shuffle``: whether to shuffle the data after each ppo epoch. ``clip_ratio``: clip ratio of the ppo algorithm. See https://arxiv.org/abs/1707.06347. ``entropy_coeff``: entropy coefficient of the PPO loss. See https://arxiv.org/abs/1707.06347. model_config (OmegaConf): model configuration. It must contains ``model_config.vocab_size`` and ``model_config.hidden_size`` megatron_config (OmegaConf): megatron configuration. It must contains ``sequence_parallel_enabled``: whether the sequence parallel is enabled. ``param_dtype``: the dtype of the parameters. ``virtual_pipeline_model_parallel_size``: virtual pipeline model parallel size. a.k.a number of chunks in each pp stage. actor_module (nn.ModuleList): actor module is a ModuleList that contains a list of nn.Module in this pp stage. each nn.Module in this rank holds a vpp module chunk. See https://arxiv.org/pdf/2104.04473.pdf for more details. The actor module has some constraints to follow in order to use the updating logics implemented here 1. It must implement unpad_input before any computation and pad_input after all the computation. Remove padding is an optimization that removes the padding tokens. See unpad_input and pad_input function in flash-attn (https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/bert_padding.py). 2. Each pp stage must return the hidden state with the same shape [total_nnz, 1, hidden_size], where total_nnz is the number of valid tokens in this batch. If sequence parallel is enabled, the size of the hidden state is [total_nnz // tp, 1, hidden_size]. actor_optimizer (DistributedOptimizer): currently, we only support DistributedOptimizer in Megatron. It implements zero1 optimizer that shards the optimizer state across dp ranks. >>> def megatron_actor_model_provider(pre_process, post_process): >>> vpp_rank = mpu.get_virtual_pipeline_model_parallel_rank() >>> parallel_model = ParallelMistralForCausalLMRmPadPP(config=actor_model_config, >>> megatron_config=megatron_config, >>> pre_process=pre_process, >>> post_process=post_process).cuda() >>> return parallel_model >>> from megatron.training import get_model >>> from megatron.optimizer import get_megatron_optimizer >>> actor_module = get_model(megatron_actor_model_provider, wrap_with_ddp=True) >>> actor_module = nn.ModuleList(actor_module) >>> actor_optimizer = get_megatron_optimizer(actor_module) >>> actor = MegatronPPOActor(config=config, >>> model_config=actor_model_config, >>> megatron_config=megatron_config, >>> actor_module=actor_module, >>> actor_optimizer=actor_optimizer) """ super().__init__(config) self.model_config = model_config self.megatron_config = megatron_config # self.megatron_args = get_args() self.actor_module = actor_module self.actor_optimizer: DistributedOptimizer = actor_optimizer self.actor_optimizer_config = actor_optimizer_config self.optimizer_step_args = OmegaConf.create({ 'skip_grad': None, 'overlap_dp_param_comm': False, 'overlap_dp_grad_comm': False, 'gradient_accumulation_steps': 1, 'sequence_parallel': self.megatron_config.sequence_parallel, 'DDP_impl': 'local', 'layernorm_allreduce_bucket_threshold': 0, 'pipeline_model_parallel_split_rank': None, 'reduce_grads_use_alltoall': False }) def compute_log_prob(self, data: DataProto) -> torch.Tensor: """Compute the log probability of the responses given input_ids, attention_mask and position_ids Args: data (DataProto): a DataProto containing keys ``input_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. Note that input_ids is the concatenation of prompt and response. Note that ``sequence_length = prompt_length + response_length``. ``attention_mask``: tensor of shape [batch_size, sequence_length]. torch.int64. ``position_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. ``responses``: tensor of shape [batch_size, response_length]. torch.int64. Returns: DataProto: torch.Tensor: the log_prob tensor """ data.batch = data.batch.contiguous() def compute_logprobs_fn(output, data): response = data['responses'] response_length = response.size(1) logits = output['logits'] logits = logits[:, -response_length - 1:-1] log_probs = vocab_parallel_log_probs_from_logits(logits, response) return {'log_probs': log_probs} # We make recompute_old_log_prob by default here. # TODO (zhangchi.usc1992): actually, this function should only return log_prob and this logic should be handled by user outside recompute_old_log_prob = self.config.get('recompute_old_log_prob', True) if recompute_old_log_prob or 'old_log_probs' not in data.batch.keys(): select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids'] batch = data.select(batch_keys=select_keys).batch input_ids = batch['input_ids'] batch_size = input_ids.size(0) response = batch['responses'] response_length = response.size(1) with torch.no_grad(): output = self.forward_backward_batch(data, forward_only=True, post_process_fn=compute_logprobs_fn) if mpu.is_pipeline_last_stage(ignore_virtual=True): # only on last rank. It should be on every tp rank log_probs = torch.cat([o['log_probs'] for o in output], dim=0) # (bs, seq_size) log_probs = log_probs.to(torch.float32) else: log_probs = torch.empty(size=(batch_size, response_length), dtype=torch.float32, device=input_ids.device) # broadcast across pp ranks torch.distributed.broadcast(tensor=log_probs, src=mpu.get_pipeline_model_parallel_last_rank(), group=mpu.get_pipeline_model_parallel_group(), async_op=False) # add empty cache after each compute torch.cuda.empty_cache() return log_probs def make_minibatch_iterator(self, data: DataProto) -> Iterable[DataProto]: """Make minibatch iterator for updating the actor Args: data (DataProto): a DataProto containing keys ``input_ids``: tensor of shape [batch_size, sequence_length]. torch.int64, where ``sequence_length = prompt_length + response_length`` ``attention_mask``: tensor of shape [batch_size, sequence_length]. torch.int64 ``position_ids``: tensor of shape [batch_size, sequence_length]. torch.int64 ``responses``: tensor of shape [batch_size, response_length]. torch.int64. Note that responses = input_ids[:, -response_length:] ``old_log_probs``: tensor of shape [batch_size, response_length]. torch.float32. The log probability of responses. ``advantages``: tensor of shape [batch_size, response_length]. torch.float32. The advantages of responses. See PPO paper for details. https://arxiv.org/abs/1707.06347 Returns: """ select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids', 'old_log_probs', 'advantages'] data = data.select(batch_keys=select_keys) return data.make_iterator(mini_batch_size=self.config.ppo_mini_batch_size, epochs=self.config.ppo_epochs, dataloader_kwargs={'shuffle': self.config.shuffle}) def forward_backward_batch(self, data: DataProto, forward_only=False, post_process_fn=None): """ We assume: - The model takes input: (input_ids, attention_mask, position_ids). No rmpad for the input - The communication shape is (total_nnz_pad_to_sp // tp_size, 1, hidden_size) if sequence parallel is enabled """ # broadcast from last pp rank to all other pp ranks # TODO: actually, we just need to control the sampling order. broadcast_dict_tensor(data.batch, src=mpu.get_pipeline_model_parallel_last_rank(), group=mpu.get_pipeline_model_parallel_group()) # split into micro-batches data.batch['attention_mask'] = data.batch['attention_mask'].to(bool) if data.meta_info.get('micro_batch_size', None) is not None: batch_size = data.meta_info['micro_batch_size'] else: batch_size = self.config.ppo_micro_batch_size batches = split_dict_tensor_into_batches(data.batch, batch_size=batch_size) # compute input shapes for pp stages input_shapes = compute_transformers_input_shapes( batches, meta_info={ 'sequence_parallel': self.megatron_config.sequence_parallel, 'hidden_size': self.model_config.hidden_size }) n_micro_batch = len(batches) seq_len = batches[0]['input_ids'].shape[1] forward_backward_func = get_forward_backward_func() def loss_func(output, data, meta_info): if forward_only: if post_process_fn is None: return 1.0, {'logits': output.logits} else: return 1.0, post_process_fn(output, data) responses = data['responses'] response_length = responses.size(1) attention_mask = data['attention_mask'] response_mask = attention_mask[:, -response_length:] old_log_prob = data['old_log_probs'] advantages = data['advantages'] clip_ratio = meta_info['clip_ratio'] entropy_coeff = meta_info['entropy_coeff'] # compute policy loss logits = output.logits logits = logits[:, -response_length - 1:-1] log_prob = vocab_parallel_log_probs_from_logits(logits, responses) pg_loss, pg_clipfrac, ppo_kl = core_algos.compute_policy_loss(old_log_prob=old_log_prob, log_prob=log_prob, advantages=advantages, eos_mask=response_mask, cliprange=clip_ratio) entropy_loss = vocab_parallel_compute_entropy_loss(logits, eos_mask=response_mask) policy_loss = pg_loss - entropy_loss * entropy_coeff # return loss and stats stats = { 'actor/entropy_loss': entropy_loss.detach().item(), 'actor/pg_loss': pg_loss.detach().item(), 'actor/pg_clipfrac': pg_clipfrac.detach().item(), 'actor/ppo_kl': ppo_kl.detach().item() } return policy_loss, stats def forward_step(batch_iter, model): batch = next(batch_iter) input_ids = batch['input_ids'] attention_mask = batch['attention_mask'] position_ids = batch['position_ids'] output = model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids) if forward_only: meta_info = None else: meta_info = {'clip_ratio': self.config.clip_ratio, 'entropy_coeff': self.config.entropy_coeff} return output, partial(loss_func, data=batch, meta_info=meta_info) # batch should be a list of batches inside micro-batches batch_generator = make_batch_generator(batches, vpp_size=len(self.actor_module)) # TODO: we may use the new schedule instead # for flash-attn: (seq_len, batch_size, hidden_size) = (mbs*seq_len, 1, hidden_size) if mpu.get_pipeline_model_parallel_world_size() > 1: losses_reduced = forward_backward_func( forward_step_func=forward_step, data_iterator=batch_generator, model=self.actor_module, num_microbatches=n_micro_batch, input_shapes=input_shapes, # must set for flash-attn sequence packing seq_length=batch_size * seq_len, # no use when input_shapes was set hidden_size=self.model_config.hidden_size, # no use when input_shapes was set micro_batch_size=1, # no use when input_shapes was set forward_only=forward_only, ) else: losses_reduced = forward_backward_func( forward_step_func=forward_step, data_iterator=batch_generator, model=self.actor_module, num_microbatches=n_micro_batch, seq_length=batch_size * seq_len, # in use for pp = 1 hidden_size=self.model_config.hidden_size, # in use for pp = 1 micro_batch_size=1, # in use for pp = 1 forward_only=forward_only, ) # loss_reduces contains the stats returned from loss_func return losses_reduced def update_policy(self, dataloader: Iterable[DataProto]) -> Dict: """Update the policy with an iterator of DataProto Args: dataloader (Iterable[DataProto]): an iterator over the DataProto that returns by ``make_minibatch_iterator`` The keys of each data batch is described in the make_minibatch_iterator. Returns: Dict: a dictionary containing the statistics. Note that the statistics are only valid in the last pp stage and users have to combine the output in each dp rank manually. """ metrics = {} for data in dataloader: # data = data.batch.to(self.actor_module.device) self.actor_optimizer.zero_grad() # use use_contiguous_buffers_in_local_ddp and no overlap_dp_param_comm for chunk in self.actor_module: # if use distributed optimizer, zero grad buffer will be handled by optimizer chunk.zero_grad_buffer(zero_buffer=(not self.actor_optimizer_config.use_distributed_optimizer)) metric_micro_batch = self.forward_backward_batch(data) for metric in metric_micro_batch: append_to_dict(metrics, metric) # append the metric from this micro-batch to global metrics. update_successful, grad_norm, num_zeros_in_grad = self.actor_optimizer.step( self.megatron_config, self.megatron_config.timers) if update_successful: # allgather already execute in optimizer.step in new megatron pass else: raise NotImplementedError for metric in metric_micro_batch: append_to_dict(metrics, metric) # append the metric from this micro-batch to global metrics. # add empty cache after each compute torch.cuda.empty_cache() return metrics