# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The main entry point to run the PPO algorithm """ import os import logging import ray import torch import torch.distributed import torch.nn as nn from omegaconf import DictConfig from verl.single_controller.base.megatron.worker import MegatronWorker from verl.workers.actor.megatron_actor import MegatronPPOActor from verl.workers.critic.megatron_critic import MegatronPPOCritic from verl.workers.sharding_manager import AllGatherPPModel from verl.workers.reward_model.megatron.reward_model import MegatronRewardModel from verl.single_controller.base.decorator import register, Dispatch from verl import DataProto from verl.utils.fs import copy_local_path_from_hdfs from verl.utils.debug import log_gpu_memory_usage from verl.utils.model import load_megatron_model_weights from verl.utils.megatron_utils import init_model_parallel_config from verl.utils.megatron_utils import offload_megatron_param_and_grad, load_megatron_param_and_grad from verl.utils import hf_tokenizer from megatron.core import parallel_state as mpu from megatron.core import ModelParallelConfig logger = logging.getLogger(__file__) logger.setLevel(os.getenv('VERL_PPO_LOGGING_LEVEL', 'WARN')) def set_random_seed(seed): import torch import numpy as np import random torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) if torch.cuda.device_count() > 0: from megatron.core import tensor_parallel tensor_parallel.model_parallel_cuda_manual_seed(seed) # FIXME: torch cumsum not support deterministic (used in vllm sampler), # https://github.com/pytorch/pytorch/issues/89492 # torch.use_deterministic_algorithms(True, warn_only=True) # os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' class ActorRolloutRefWorker(MegatronWorker): """ This worker can be instantiated as a standalone actor or a standalone rollout or a standalone reference policy or a hybrid engine based on the config.rollout """ def __init__(self, config: DictConfig, role: str): super().__init__() self.config = config # NOTE(sgm): We utilize colocate WorkerGroup by default. # As a result, Workers for different model share the same process. # Therefore, we only require one distribute initialization. # To utilize different parallel startegy in different models: # 1, users should disable WorkerDict; 2.assign different ResourcePool to different models, # 3. and apply the following patch in ray==2.10, https://github.com/ray-project/ray/pull/44385 if not torch.distributed.is_initialized(): rank = int(os.environ['LOCAL_RANK']) torch.distributed.init_process_group(backend="nccl") torch.cuda.set_device(rank) if self.config.actor.megatron.sequence_parallel: os.environ['CUDA_DEVICE_MAX_CONNECTIONS'] = '1' mpu.initialize_model_parallel( tensor_model_parallel_size=self.config.actor.megatron.tensor_model_parallel_size, pipeline_model_parallel_size=self.config.actor.megatron.pipeline_model_parallel_size, virtual_pipeline_model_parallel_size=None, pipeline_model_parallel_split_rank=None, use_sharp=False, context_parallel_size=1, expert_model_parallel_size=1, nccl_communicator_config_path=None, ) set_random_seed(seed=self.config.actor.megatron.seed) self.role = role assert self.role in ['actor', 'rollout', 'ref', 'actor_rollout', 'actor_rollout_ref'] self._is_actor = self.role in ['actor', 'actor_rollout', 'actor_rollout_ref'] self._is_rollout = self.role in ['rollout', 'actor_rollout', 'actor_rollout_ref'] self._is_ref = self.role in ['ref', 'actor_rollout_ref'] # TODO(sgm): Currently, we only support reference model param offload # will support other offload later self._is_offload_param = False self._is_offload_grad = False self._is_offload_optimizer = False # normalize config if self._is_actor and self._is_rollout: self.config.actor.ppo_mini_batch_size //= mpu.get_data_parallel_world_size() self.config.actor.ppo_micro_batch_size //= mpu.get_data_parallel_world_size() self.config.rollout.log_prob_micro_batch_size //= mpu.get_data_parallel_world_size() self._is_offload_param = self.config.actor.get('param_offload', False) self._is_offload_grad = self.config.actor.get('grad_offload', False) self._is_offload_optimizer = self.config.actor.get('optimizer_offload', False) elif self._is_ref: self.config.ref.log_prob_micro_batch_size //= mpu.get_data_parallel_world_size() self._is_offload_param = self.config.ref.get('param_offload', False) def _build_model_optimizer(self, model_path, megatron_config: ModelParallelConfig, optim_config, override_model_config, enable_gradient_checkpointing=False): from verl.utils.megatron.optimizer import get_megatron_optimizer from megatron.core.models.gpt.gpt_model import ModelType from verl.utils.model import print_model_size, update_model_config from verl.utils.megatron_utils import get_model, init_megatron_optim_config from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig # Step 1: initialize the tokenizer local_path = copy_local_path_from_hdfs(model_path) self.tokenizer = hf_tokenizer(local_path) # Step 2: get the actor_model_config actor_model_config = AutoConfig.from_pretrained(local_path) override_config_kwargs = { 'bos_token_id': self.tokenizer.bos_token_id, 'eos_token_id': self.tokenizer.eos_token_id, 'pad_token_id': self.tokenizer.pad_token_id, } override_config_kwargs.update(override_model_config) update_model_config(actor_model_config, override_config_kwargs=override_config_kwargs) if self.rank == 0: print(f'Model config after override: {actor_model_config}') def megatron_actor_model_provider(pre_process, post_process): from verl.utils.model import get_parallel_model_from_config # vpp is not supported yet because it will hang for some reason. Need debugging vpp_rank = mpu.get_virtual_pipeline_model_parallel_rank() # this will be set inside get_model # this_megatron_config = copy.deepcopy(megatron_config) # this_megatron_config.virtual_pipeline_model_parallel_rank = vpp_rank parallel_model = get_parallel_model_from_config(config=actor_model_config, megatron_config=megatron_config, pre_process=pre_process, post_process=post_process, value=False) parallel_model.cuda() return parallel_model # Step 3: initialize the megatron model if self._is_actor and self._is_rollout: # Initialize the 3D HybridEngine hybrid_engine = AllGatherPPModel(model_provider=megatron_actor_model_provider) # Fetch the model at current rank actor_module = hybrid_engine.this_rank_models if isinstance(actor_module, nn.ModuleList): actor_module = [actor_module[0]] if self.config.actor.load_weight: load_megatron_model_weights(self.config, actor_model_config, actor_module, params_dtype=megatron_config.params_dtype, is_value_model=False) if self.rank == 0: print_model_size(actor_module[0]) log_gpu_memory_usage('After AllGatherPPModel init', logger=logger) elif self._is_ref: print(f'self.config.ref.load_weight: {self.config.ref.load_weight}') ref_module = get_model(model_provider_func=megatron_actor_model_provider, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=False) # ref_module = nn.ModuleList(ref_module) if self.config.ref.load_weight: # should align with the actor: assert self.config.actor.load_weight == self.config.ref.load_weight print(f'load ref weight start') load_megatron_model_weights(self.config, actor_model_config, ref_module, params_dtype=megatron_config.params_dtype, is_value_model=False) log_gpu_memory_usage('After ref module init', logger=logger) return ref_module, actor_model_config # TODO: add more optimizer args into config if self._is_actor: optim_config = init_megatron_optim_config(optim_config) actor_optimizer = get_megatron_optimizer(model=actor_module, config=optim_config) else: optim_config = None actor_optimizer = None log_gpu_memory_usage('After actor optimizer init', logger=logger) return actor_module, hybrid_engine, actor_optimizer, actor_model_config, optim_config def _build_rollout(self): if self.config.rollout.name == 'vllm': from verl.workers.rollout.vllm_rollout import vLLMRollout from verl.workers.sharding_manager import MegatronVLLMShardingManager from verl.utils.model import normalize_pp_vpp_params # NOTE(sgm): If the QKV and gate_up projection layer are concate together in actor, # we will reorganize their weight format when resharding from actor to rollout. layer_name_mapping = { "qkv_layer_name": self.config.rollout.layer_name_map.get("qkv_layer_name", "qkv"), "gate_proj_layer_name": self.config.rollout.layer_name_map.get("gate_proj_layer_name", "linear_fc1.weight"), } # reshard the weight partition from actor to rollout to initialize the rollout class # create a new cuda space for parameters not in this pp rank self.hybrid_engine.load_params_to_cuda() # broadcast the parameters from pp rank to other ranks self.hybrid_engine.allgather_params() # obtain name to parameters in pp/vpp params = self.hybrid_engine.get_all_params() # update the param name for the params = normalize_pp_vpp_params(params=params, num_hidden_layers=self.actor_model_config.num_hidden_layers, layer_name='layers') rollout = vLLMRollout(actor_module=params, config=self.config.rollout, tokenizer=self.tokenizer, model_hf_config=self.actor_model_config, train_tp=mpu.get_tensor_model_parallel_world_size()) log_gpu_memory_usage('After building vllm rollout', logger=logger) # perform weight resharding between actor and rollout sharding_manager = MegatronVLLMShardingManager(module=self.hybrid_engine, inference_engine=rollout.inference_engine, model_config=self.actor_model_config, layer_name_mapping=layer_name_mapping) log_gpu_memory_usage('After building sharding manager', logger=logger) else: NotImplementedError('Only vllmRollout is supported with Megatron now') return rollout, sharding_manager @register(dispatch_mode=Dispatch.ONE_TO_ALL) def init_model(self): if self.config.model.get('external_lib', None) is not None: # This is used to import external_lib into the huggingface systems import importlib importlib.import_module(self.config.model.external_lib) from omegaconf import OmegaConf from verl.utils.torch_dtypes import PrecisionType override_model_config = OmegaConf.to_container(self.config.model.get('override_config', OmegaConf.create())) torch_dtype = torch.bfloat16 megatron_config = OmegaConf.create({ 'sequence_parallel': self.config.actor.megatron.get('sequence_parallel', True), 'param_dtype': PrecisionType.to_str(torch_dtype), 'tensor_model_parallel_size': mpu.get_tensor_model_parallel_world_size(), 'pipeline_model_parallel_rank': mpu.get_pipeline_model_parallel_rank(), 'pipeline_model_parallel_size': mpu.get_pipeline_model_parallel_world_size(), 'virtual_pipeline_model_parallel_rank': mpu.get_virtual_pipeline_model_parallel_rank(), 'virtual_pipeline_model_parallel_size': mpu.get_virtual_pipeline_model_parallel_world_size() }) megatron_config = init_model_parallel_config(megatron_config) if self._is_actor or self._is_rollout: # we need the model for actor and rollout if self._is_actor: optim_config = self.config.actor.optim else: optim_config = None self.actor_module, self.hybrid_engine, self.actor_optimizer, \ self.actor_model_config, self.actor_optim_config = self._build_model_optimizer( model_path=self.config.model.path, megatron_config=megatron_config, optim_config=optim_config, override_model_config=override_model_config, ) if self._is_actor: self.actor = MegatronPPOActor(config=self.config.actor, model_config=self.actor_model_config, megatron_config=megatron_config, actor_module=self.actor_module, actor_optimizer=self.actor_optimizer, actor_optimizer_config=self.actor_optim_config) if self._is_rollout: self.rollout, self.sharding_manager = self._build_rollout() if self._is_ref: self.ref_module, self.ref_model_config = self._build_model_optimizer( model_path=self.config.model.path, megatron_config=megatron_config, optim_config=None, override_model_config=override_model_config, ) self.ref_policy = MegatronPPOActor(config=self.config.ref, model_config=self.ref_model_config, megatron_config=megatron_config, actor_module=self.ref_module, actor_optimizer=None, actor_optimizer_config=None) torch.cuda.empty_cache() @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO) def update_actor(self, data: DataProto): assert self._is_actor data.batch = data.batch.cuda() log_gpu_memory_usage('Before update policy', logger=logger) dataloader = self.actor.make_minibatch_iterator(data=data) metrics = self.actor.update_policy(dataloader=dataloader) log_gpu_memory_usage('After update policy', logger=logger) # TODO: here, we should return all metrics output = DataProto(meta_info={'metrics': metrics}) output = output.to('cpu') torch.cuda.empty_cache() return output # @register(dispatch_mode=Dispatch.MEGATRON_PP_AS_DP_PROTO) # def compute_log_prob(self, data: DataProto) -> DataProto: # assert self._is_rollout # output = self.actor.compute_log_prob(data=data) # output = DataProto.from_dict(tensors={'old_log_probs': output}) # torch.cuda.empty_cache() # return output @register(dispatch_mode=Dispatch.MEGATRON_PP_AS_DP_PROTO) def generate_sequences(self, prompts: DataProto): assert self._is_rollout prompts.batch = prompts.batch.cuda() meta_info = {'eos_token_id': self.tokenizer.eos_token_id, 'pad_token_id': self.tokenizer.pad_token_id} prompts.meta_info.update(meta_info) with self.sharding_manager: log_gpu_memory_usage('After entering sharding manager', logger=logger) prompts = self.sharding_manager.preprocess_data(prompts) output = self.rollout.generate_sequences(prompts=prompts) log_gpu_memory_usage('After rollout generation', logger=logger) output = self.sharding_manager.postprocess_data(output) validate = prompts.meta_info.get('validate', False) if self._is_actor and not validate: # we should always recompute old_log_probs when it is HybridEngine output.meta_info['micro_batch_size'] = self.config.rollout.log_prob_micro_batch_size output.meta_info['temperature'] = self.config.rollout.temperature old_log_probs = self.actor.compute_log_prob(data=output) output.batch['old_log_probs'] = old_log_probs output = output.to('cpu') # clear kv cache torch.cuda.empty_cache() log_gpu_memory_usage('After recompute log prob', logger=logger) return output @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO) def compute_ref_log_prob(self, data: DataProto): data = data.to('cuda') assert self._is_ref if self._is_offload_param: load_megatron_param_and_grad(self.ref_module, torch.cuda.current_device(), self._is_offload_grad) micro_batch_size = self.config.rollout.log_prob_micro_batch_size data.meta_info['micro_batch_size'] = micro_batch_size data.meta_info['temperature'] = self.config.rollout.temperature output = self.ref_policy.compute_log_prob(data=data) output = DataProto.from_dict(tensors={'ref_log_prob': output}) output = output.to('cpu') if self._is_offload_param: offload_megatron_param_and_grad(self.ref_module, self._is_offload_grad) torch.cuda.empty_cache() return output @register(dispatch_mode=Dispatch.ONE_TO_ALL) def load_checkpoint(self, checkpoint_path): pass @register(dispatch_mode=Dispatch.ONE_TO_ALL) def load_pretrained_model(self, checkpoint_path): pass @register(dispatch_mode=Dispatch.ONE_TO_ALL) def save_checkpoint(self, checkpoint_path): assert self._is_actor pass class CriticWorker(MegatronWorker): def __init__(self, config): super().__init__() self.config = config # NOTE(sgm): We utilize colocate WorkerGroup by default. # As a result, Workers for different model share the same process. # Therefore, we only require one distribute initialization. # To utilize different parallel startegy in different models: # 1, users should disable WorkerDict; 2.assign different ResourcePool to different models, # 3. and apply the following patch in ray==2.10, https://github.com/ray-project/ray/pull/44385 if not torch.distributed.is_initialized(): rank = int(os.environ['LOCAL_RANK']) torch.distributed.init_process_group(backend="nccl") torch.cuda.set_device(rank) if self.config.megatron.sequence_parallel: os.environ['CUDA_DEVICE_MAX_CONNECTIONS'] = '1' mpu.initialize_model_parallel( tensor_model_parallel_size=self.config.megatron.tensor_model_parallel_size, pipeline_model_parallel_size=self.config.megatron.pipeline_model_parallel_size, virtual_pipeline_model_parallel_size=None, pipeline_model_parallel_split_rank=None, use_sharp=False, context_parallel_size=1, expert_model_parallel_size=1, nccl_communicator_config_path=None, ) set_random_seed(seed=self.config.megatron.seed) # normalize config self.config.ppo_mini_batch_size //= mpu.get_data_parallel_world_size() self.config.ppo_micro_batch_size //= mpu.get_data_parallel_world_size() # TODO(sgm): support critic model offload def _build_critic_model_optimizer(self, model_path, megatron_config: ModelParallelConfig, optim_config, override_model_config, enable_gradient_checkpointing=False): from megatron.core.models.gpt.gpt_model import ModelType from verl.utils.model import print_model_size, update_model_config from verl.utils.megatron.optimizer import get_megatron_optimizer from verl.utils.megatron_utils import get_model, init_megatron_optim_config, init_model_parallel_config from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig # Step 1: initialize the tokenizer local_path = copy_local_path_from_hdfs(model_path) self.tokenizer = hf_tokenizer(local_path) # Step 2: get the actor_model_config critic_model_config = AutoConfig.from_pretrained(local_path) override_config_kwargs = { 'bos_token_id': self.tokenizer.bos_token_id, 'eos_token_id': self.tokenizer.eos_token_id, 'pad_token_id': self.tokenizer.pad_token_id, } override_config_kwargs.update(override_model_config) update_model_config(critic_model_config, override_config_kwargs=override_config_kwargs) if self.rank == 0: print(f'Model config after override: {critic_model_config}') def megatron_critic_model_provider(pre_process, post_process): from verl.utils.model import get_parallel_model_from_config # TODO: support vpp here # vpp_rank = mpu.get_virtual_pipeline_model_parallel_rank() # this will be set inside get_model # this_megatron_config = copy.deepcopy(megatron_config) # this_megatron_config.virtual_pipeline_model_parallel_rank = vpp_rank parallel_model = get_parallel_model_from_config(config=critic_model_config, megatron_config=megatron_config, pre_process=pre_process, post_process=post_process, value=True) parallel_model.cuda() return parallel_model # Step 3: initialize the megatron model critic_module = get_model(model_provider_func=megatron_critic_model_provider, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True) # note that here critic_module will be a list to be compatible with the construction of interleaved pp (vpp). # but here, we do not use pp (vpp) yet. For simplicity, we remove the list # critic_module = nn.ModuleList(critic_module) if self.config.load_weight: load_megatron_model_weights(self.config, critic_model_config, critic_module, params_dtype=megatron_config.params_dtype, is_value_model=True) if self.rank == 0: print_model_size(critic_module[0]) # TODO: add more optimizer args into config optim_config = init_megatron_optim_config(optim_config) critic_optimizer = get_megatron_optimizer(model=critic_module, config=optim_config) torch.cuda.empty_cache() return critic_module, critic_optimizer, critic_model_config, optim_config @register(dispatch_mode=Dispatch.ONE_TO_ALL) def init_model(self): # create critic from omegaconf import OmegaConf from verl.utils.torch_dtypes import PrecisionType if self.config.model.get('external_lib', None) is not None: # This is used to import external_lib into the huggingface systems import importlib importlib.import_module(self.config.model.external_lib) override_model_config = OmegaConf.to_container(self.config.model.get('override_config', OmegaConf.create())) torch_dtype = torch.bfloat16 megatron_config = OmegaConf.create({ 'sequence_parallel': self.config.megatron.get('sequence_parallel', True), 'param_dtype': PrecisionType.to_str(torch_dtype), 'tensor_model_parallel_size': mpu.get_tensor_model_parallel_world_size(), 'pipeline_model_parallel_rank': mpu.get_pipeline_model_parallel_rank(), 'pipeline_model_parallel_size': mpu.get_pipeline_model_parallel_world_size(), 'virtual_pipeline_model_parallel_rank': mpu.get_virtual_pipeline_model_parallel_rank(), 'virtual_pipeline_model_parallel_size': mpu.get_virtual_pipeline_model_parallel_world_size() }) megatron_config = init_model_parallel_config(megatron_config) critic_module, critic_optimizer, critic_model_config, critic_optimizer_config = self._build_critic_model_optimizer( model_path=self.config.model.path, megatron_config=megatron_config, optim_config=self.config.optim, override_model_config=override_model_config) self.critic = MegatronPPOCritic(config=self.config, model_config=critic_model_config, megatron_config=megatron_config, critic_module=critic_module, critic_optimizer=critic_optimizer, critic_optimizer_config=critic_optimizer_config) @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO) def compute_values(self, data: DataProto): data = data.to('cuda') values = self.critic.compute_values(data=data) output = DataProto.from_dict(tensors={'values': values}) output = output.to('cpu') return output @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO) def update_critic(self, data: DataProto): data = data.to('cuda') dataloader = self.critic.make_minibatch_iterator(data) metrics = self.critic.update_critic(dataloader=dataloader) output = DataProto(batch=None, meta_info={'metrics': metrics}) output = output.to('cpu') return output @register(dispatch_mode=Dispatch.ONE_TO_ALL) def load_checkpoint(self, checkpoint_path): pass @register(dispatch_mode=Dispatch.ONE_TO_ALL) def save_checkpoint(self, checkpoint_path): pass class RewardModelWorker(MegatronWorker): """ Note that we only implement the reward model that is subclass of AutoModelForSequenceClassification. """ def __init__(self, config): super().__init__() self.config = config # NOTE(sgm): We utilize colocate WorkerGroup by default. # As a result, Workers for different model share the same process. # Therefore, we only require one distribute initialization. # To utilize different parallel startegy in different models: # 1, users should disable WorkerDict; 2.assign different ResourcePool to different models, # 3. and apply the following patch in ray==2.10, https://github.com/ray-project/ray/pull/44385 if not torch.distributed.is_initialized(): rank = int(os.environ['LOCAL_RANK']) torch.distributed.init_process_group(backend="nccl") torch.cuda.set_device(rank) if self.config.megatron.sequence_parallel: os.environ['CUDA_DEVICE_MAX_CONNECTIONS'] = '1' mpu.initialize_model_parallel( tensor_model_parallel_size=self.config.megatron.tensor_model_parallel_size, pipeline_model_parallel_size=self.config.megatron.pipeline_model_parallel_size, virtual_pipeline_model_parallel_size=None, pipeline_model_parallel_split_rank=None, use_sharp=False, context_parallel_size=1, expert_model_parallel_size=1, nccl_communicator_config_path=None, ) set_random_seed(seed=self.config.megatron.seed) # normalize config self.config.micro_batch_size //= mpu.get_data_parallel_world_size() def _build_rm_model(self, model_path, megatron_config: ModelParallelConfig, override_model_config): from megatron.core.models.gpt.gpt_model import ModelType from verl.utils.model import print_model_size, update_model_config from verl.utils.megatron_utils import get_model from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig # Step 1: initialize the tokenizer local_path = copy_local_path_from_hdfs(model_path) self.tokenizer = hf_tokenizer(local_path) # Step 2: get the actor_model_config rm_model_config = AutoConfig.from_pretrained(local_path) override_config_kwargs = { 'bos_token_id': self.tokenizer.bos_token_id, 'eos_token_id': self.tokenizer.eos_token_id, 'pad_token_id': self.tokenizer.pad_token_id, } override_config_kwargs.update(override_model_config) update_model_config(rm_model_config, override_config_kwargs=override_config_kwargs) if self.rank == 0: print(f'Model config after override: {rm_model_config}') def megatron_rm_model_provider(pre_process, post_process): from verl.utils.model import get_parallel_model_from_config # vpp is not supported yet because it will hang for some reason. Need debugging vpp_rank = mpu.get_virtual_pipeline_model_parallel_rank() # this will be set inside get_model # this_megatron_config = copy.deepcopy(megatron_config) # this_megatron_config.virtual_pipeline_model_parallel_rank = vpp_rank parallel_model = get_parallel_model_from_config(config=rm_model_config, megatron_config=megatron_config, pre_process=pre_process, post_process=post_process, value=True) parallel_model.cuda() return parallel_model # Step 3: initialize the megatron model reward_model = get_model(model_provider_func=megatron_rm_model_provider, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=False) # note that here critic_module will be a list to be compatible with the construction of interleaved pp (vpp). # but here, we do not use pp (vpp) yet. For simplicity, we remove the list # reward_model = nn.ModuleList(reward_model) if self.config.load_weight: load_megatron_model_weights(self.config, rm_model_config, reward_model, params_dtype=megatron_config.params_dtype, is_value_model=True) # TODO: add more optimizer args into config torch.cuda.empty_cache() return reward_model, rm_model_config @register(dispatch_mode=Dispatch.ONE_TO_ALL) def init_model(self): # create critic from omegaconf import OmegaConf from verl.utils.torch_dtypes import PrecisionType from transformers import AutoTokenizer if self.config.model.get('external_lib', None) is not None: # This is used to import external_lib into the huggingface systems import importlib importlib.import_module(self.config.model.external_lib) override_model_config = OmegaConf.to_container(self.config.model.get('override_config', OmegaConf.create())) sft_tokenizer_local_path = copy_local_path_from_hdfs(self.config.model.input_tokenizer) sft_tokenizer = hf_tokenizer(sft_tokenizer_local_path) rm_tokenizer_path = self.config.model.get('rm_tokenizer', None) rm_tokenizer = None if rm_tokenizer_path is not None: rm_tokenizer_local_path = copy_local_path_from_hdfs(rm_tokenizer_path) rm_tokenizer = hf_tokenizer(rm_tokenizer_local_path) torch_dtype = torch.bfloat16 megatron_config = OmegaConf.create({ 'sequence_parallel': self.config.megatron.get('sequence_parallel', True), 'param_dtype': PrecisionType.to_str(torch_dtype), 'tensor_model_parallel_size': mpu.get_tensor_model_parallel_world_size(), 'pipeline_model_parallel_rank': mpu.get_pipeline_model_parallel_rank(), 'pipeline_model_parallel_size': mpu.get_pipeline_model_parallel_world_size(), 'virtual_pipeline_model_parallel_rank': mpu.get_virtual_pipeline_model_parallel_rank(), 'virtual_pipeline_model_parallel_size': mpu.get_virtual_pipeline_model_parallel_world_size() }) megatron_config = init_model_parallel_config(megatron_config) reward_model_module, reward_model_config = self._build_rm_model( model_path=self.config.model.path, megatron_config=megatron_config, override_model_config=override_model_config, ) # FIXME(sgm): reward model param offload is implemented in MegatronRewardModel # should be implemented in workers self.rm = MegatronRewardModel(config=self.config, reward_model_module=reward_model_module, model_config=reward_model_config, megatron_config=megatron_config, sft_tokenizer=sft_tokenizer, rm_tokenizer=rm_tokenizer) # TODO: reward model use itself tokenizer instead of sft tokenizer # the input_ids, responses, attention_mask and position_ids may be different! @register(dispatch_mode=Dispatch.MEGATRON_COMPUTE_PROTO) def compute_rm_score(self, data: DataProto): data.batch = data.batch.cuda() output = self.rm.compute_reward(data) output = output.to('cpu') return output