1. Construct the loss mask immediately after obtaining the observation to prevent encoding misalignment when converting back to tokens after text transformation. 2. Follow up on meta info to ensure that the test batch can apply do sample. 3. Remove the recording of info information for response length.
879 lines
41 KiB
Python
879 lines
41 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
FSDP PPO Trainer with Ray-based single controller.
|
|
This trainer supports model-agonistic model initialization with huggingface
|
|
"""
|
|
|
|
import os
|
|
import uuid
|
|
from contextlib import contextmanager
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from pprint import pprint
|
|
from typing import Type, Dict
|
|
|
|
import re
|
|
import json
|
|
from collections import defaultdict
|
|
|
|
import numpy as np
|
|
from codetiming import Timer
|
|
from omegaconf import OmegaConf, open_dict
|
|
from verl import DataProto
|
|
from verl.protocol import pad_dataproto_to_divisor, unpad_dataproto
|
|
from verl.single_controller.base import Worker
|
|
from verl.single_controller.ray import RayResourcePool, RayWorkerGroup, RayClassWithInitArgs
|
|
from verl.single_controller.ray.base import create_colocated_worker_cls
|
|
from verl.trainer.ppo import core_algos
|
|
from verl.utils.seqlen_balancing import get_seqlen_balanced_partitions, log_seqlen_unbalance
|
|
|
|
import re
|
|
from search_r1.llm_agent.generation import LLMGenerationManager, GenerationConfig
|
|
|
|
WorkerType = Type[Worker]
|
|
|
|
|
|
class Role(Enum):
|
|
"""
|
|
To create more roles dynamically, you can subclass Role and add new members
|
|
"""
|
|
Actor = 0
|
|
Rollout = 1
|
|
ActorRollout = 2
|
|
Critic = 3
|
|
RefPolicy = 4
|
|
RewardModel = 5
|
|
ActorRolloutRef = 6
|
|
|
|
|
|
@dataclass
|
|
class ResourcePoolManager:
|
|
"""
|
|
Define a resource pool specification. Resource pool will be initialized first.
|
|
Mapping
|
|
"""
|
|
resource_pool_spec: dict[str, list[int]]
|
|
mapping: dict[Role, str]
|
|
resource_pool_dict: dict[str, RayResourcePool] = field(default_factory=dict)
|
|
|
|
def create_resource_pool(self):
|
|
for resource_pool_name, process_on_nodes in self.resource_pool_spec.items():
|
|
# max_colocate_count means the number of WorkerGroups (i.e. processes) in each RayResourcePool
|
|
# For FSDP backend, we recommend using max_colocate_count=1 that merge all WorkerGroups into one.
|
|
# For Megatron backend, we recommend using max_colocate_count>1 that can utilize different WorkerGroup for differnt models
|
|
resource_pool = RayResourcePool(process_on_nodes=process_on_nodes,
|
|
use_gpu=True,
|
|
max_colocate_count=1,
|
|
name_prefix=resource_pool_name)
|
|
self.resource_pool_dict[resource_pool_name] = resource_pool
|
|
|
|
def get_resource_pool(self, role: Role) -> RayResourcePool:
|
|
"""Get the resource pool of the worker_cls"""
|
|
return self.resource_pool_dict[self.mapping[role]]
|
|
|
|
|
|
import torch
|
|
from verl.utils.torch_functional import masked_mean
|
|
|
|
|
|
def apply_kl_penalty(data: DataProto, kl_ctrl: core_algos.AdaptiveKLController, kl_penalty='kl'):
|
|
responses = data.batch['responses']
|
|
response_length = responses.size(1)
|
|
token_level_scores = data.batch['token_level_scores']
|
|
batch_size = data.batch.batch_size[0]
|
|
attention_mask = data.batch['info_mask']
|
|
response_mask = attention_mask[:, -response_length:]
|
|
|
|
# compute kl between ref_policy and current policy
|
|
if 'ref_log_prob' in data.batch.keys():
|
|
kld = core_algos.kl_penalty(data.batch['old_log_probs'], data.batch['ref_log_prob'],
|
|
kl_penalty=kl_penalty) # (batch_size, response_length)
|
|
kld = kld * response_mask
|
|
beta = kl_ctrl.value
|
|
else:
|
|
beta = 0
|
|
kld = torch.zeros_like(response_mask, dtype=torch.float32)
|
|
|
|
token_level_rewards = token_level_scores - beta * kld
|
|
|
|
current_kl = masked_mean(kld, mask=response_mask, axis=-1) # average over sequence
|
|
current_kl = torch.mean(current_kl, dim=0).item()
|
|
|
|
# according to https://github.com/huggingface/trl/blob/951ca1841f29114b969b57b26c7d3e80a39f75a0/trl/trainer/ppo_trainer.py#L837
|
|
kl_ctrl.update(current_kl=current_kl, n_steps=batch_size)
|
|
data.batch['token_level_rewards'] = token_level_rewards
|
|
|
|
metrics = {'critic/kl': current_kl, 'critic/kl_coeff': beta}
|
|
|
|
return data, metrics
|
|
|
|
|
|
def compute_advantage(data: DataProto, adv_estimator, gamma=1.0, lam=1.0, num_repeat=1):
|
|
# prepare response group
|
|
# TODO: add other ways to estimate advantages
|
|
if adv_estimator == 'gae':
|
|
values = data.batch['values']
|
|
responses = data.batch['responses']
|
|
response_length = responses.size(-1)
|
|
attention_mask = data.batch['attention_mask']
|
|
response_mask = attention_mask[:, -response_length:]
|
|
token_level_rewards = data.batch['token_level_rewards']
|
|
advantages, returns = core_algos.compute_gae_advantage_return(token_level_rewards=token_level_rewards,
|
|
values=values,
|
|
eos_mask=response_mask,
|
|
gamma=gamma,
|
|
lam=lam)
|
|
data.batch['advantages'] = advantages
|
|
data.batch['returns'] = returns
|
|
elif adv_estimator == 'grpo':
|
|
token_level_rewards = data.batch['token_level_rewards']
|
|
index = data.non_tensor_batch['uid']
|
|
responses = data.batch['responses']
|
|
response_length = responses.size(-1)
|
|
attention_mask = data.batch['attention_mask']
|
|
response_mask = attention_mask[:, -response_length:]
|
|
advantages, returns = core_algos.compute_grpo_outcome_advantage(token_level_rewards=token_level_rewards,
|
|
eos_mask=response_mask,
|
|
index=index)
|
|
data.batch['advantages'] = advantages
|
|
data.batch['returns'] = returns
|
|
else:
|
|
raise NotImplementedError
|
|
return data
|
|
|
|
|
|
def reduce_metrics(metrics: dict):
|
|
for key, val in metrics.items():
|
|
metrics[key] = np.mean(val)
|
|
return metrics
|
|
|
|
|
|
def _compute_response_info(batch):
|
|
response_length = batch.batch['responses'].shape[-1]
|
|
|
|
prompt_mask = batch.batch['info_mask'][:, :-response_length]
|
|
response_mask = batch.batch['info_mask'][:, -response_length:]
|
|
|
|
prompt_length = prompt_mask.sum(-1).float()
|
|
response_length = response_mask.sum(-1).float() # (batch_size,)
|
|
|
|
return dict(
|
|
response_mask=response_mask,
|
|
prompt_length=prompt_length,
|
|
response_length=response_length,
|
|
)
|
|
|
|
|
|
def compute_data_metrics(batch, use_critic=True):
|
|
# TODO: add response length
|
|
sequence_score = batch.batch['token_level_scores'].sum(-1)
|
|
sequence_reward = batch.batch['token_level_rewards'].sum(-1)
|
|
|
|
advantages = batch.batch['advantages']
|
|
returns = batch.batch['returns']
|
|
|
|
max_response_length = batch.batch['responses'].shape[-1]
|
|
|
|
prompt_mask = batch.batch['attention_mask'][:, :-max_response_length].bool()
|
|
response_mask = batch.batch['attention_mask'][:, -max_response_length:].bool()
|
|
|
|
max_prompt_length = prompt_mask.size(-1)
|
|
|
|
response_info = _compute_response_info(batch)
|
|
prompt_length = response_info['prompt_length']
|
|
response_length = response_info['response_length']
|
|
|
|
valid_adv = torch.masked_select(advantages, response_mask)
|
|
valid_returns = torch.masked_select(returns, response_mask)
|
|
|
|
if use_critic:
|
|
values = batch.batch['values']
|
|
valid_values = torch.masked_select(values, response_mask)
|
|
return_diff_var = torch.var(valid_returns - valid_values)
|
|
return_var = torch.var(valid_returns)
|
|
|
|
metrics = {
|
|
# score
|
|
'critic/score/mean':
|
|
torch.mean(sequence_score).detach().item(),
|
|
'critic/score/max':
|
|
torch.max(sequence_score).detach().item(),
|
|
'critic/score/min':
|
|
torch.min(sequence_score).detach().item(),
|
|
# reward
|
|
'critic/rewards/mean':
|
|
torch.mean(sequence_reward).detach().item(),
|
|
'critic/rewards/max':
|
|
torch.max(sequence_reward).detach().item(),
|
|
'critic/rewards/min':
|
|
torch.min(sequence_reward).detach().item(),
|
|
# adv
|
|
'critic/advantages/mean':
|
|
torch.mean(valid_adv).detach().item(),
|
|
'critic/advantages/max':
|
|
torch.max(valid_adv).detach().item(),
|
|
'critic/advantages/min':
|
|
torch.min(valid_adv).detach().item(),
|
|
# returns
|
|
'critic/returns/mean':
|
|
torch.mean(valid_returns).detach().item(),
|
|
'critic/returns/max':
|
|
torch.max(valid_returns).detach().item(),
|
|
'critic/returns/min':
|
|
torch.min(valid_returns).detach().item(),
|
|
**({
|
|
# values
|
|
'critic/values/mean': torch.mean(valid_values).detach().item(),
|
|
'critic/values/max': torch.max(valid_values).detach().item(),
|
|
'critic/values/min': torch.min(valid_values).detach().item(),
|
|
# vf explained var
|
|
'critic/vf_explained_var': (1.0 - return_diff_var / (return_var + 1e-5)).detach().item(),
|
|
} if use_critic else {}),
|
|
|
|
# response length
|
|
'response_length/mean':
|
|
torch.mean(response_length).detach().item(),
|
|
'response_length/max':
|
|
torch.max(response_length).detach().item(),
|
|
'response_length/min':
|
|
torch.min(response_length).detach().item(),
|
|
'response_length/clip_ratio':
|
|
torch.mean(torch.eq(response_length, max_response_length).float()).detach().item(),
|
|
# prompt length
|
|
'prompt_length/mean':
|
|
torch.mean(prompt_length).detach().item(),
|
|
'prompt_length/max':
|
|
torch.max(prompt_length).detach().item(),
|
|
'prompt_length/min':
|
|
torch.min(prompt_length).detach().item(),
|
|
'prompt_length/clip_ratio':
|
|
torch.mean(torch.eq(prompt_length, max_prompt_length).float()).detach().item(),
|
|
|
|
# metrics for actions
|
|
# 'metric/total_env':
|
|
# int(np.array(batch.non_tensor_batch['total_env'], dtype=np.int16).sum()),
|
|
# 'metric/finished_env':
|
|
# int(np.array(batch.non_tensor_batch['finished_env'], dtype=np.int16).sum()),
|
|
# 'metric/traj_length':
|
|
# float(np.array(batch.non_tensor_batch['traj_length'], dtype=np.int16).mean()),
|
|
# 'metric/valid_action':
|
|
# float(np.array(batch.non_tensor_batch['valid_action'], dtype=np.int16).mean()),
|
|
# 'metric/effective_action':
|
|
# float(np.array(batch.non_tensor_batch['effective_action'], dtype=np.int16).mean()),
|
|
# 'metric/effective_action_ratio':
|
|
# float(np.array(batch.non_tensor_batch['effective_action_ratio'], dtype=np.float32).mean()),
|
|
}
|
|
|
|
return metrics
|
|
|
|
|
|
def compute_timing_metrics(batch, timing_raw):
|
|
response_info = _compute_response_info(batch)
|
|
num_prompt_tokens = torch.sum(response_info['prompt_length']).item()
|
|
num_response_tokens = torch.sum(response_info['response_length']).item()
|
|
num_overall_tokens = num_prompt_tokens + num_response_tokens
|
|
|
|
num_tokens_of_section = {
|
|
'gen': num_response_tokens,
|
|
**{
|
|
name: num_overall_tokens for name in ['ref', 'values', 'adv', 'update_critic', 'update_actor', 'rollout']
|
|
},
|
|
}
|
|
|
|
return {
|
|
**{
|
|
f'timing_s/{name}': value for name, value in timing_raw.items()
|
|
},
|
|
**{
|
|
f'timing_per_token_ms/{name}': timing_raw[name] * 1000 / num_tokens_of_section[name] for name in set(num_tokens_of_section.keys(
|
|
)) & set(timing_raw.keys())
|
|
},
|
|
}
|
|
|
|
|
|
@contextmanager
|
|
def _timer(name: str, timing_raw: Dict[str, float]):
|
|
with Timer(name=name, logger=None) as timer:
|
|
yield
|
|
timing_raw[name] = timer.last
|
|
|
|
|
|
class RayPPOTrainer(object):
|
|
"""
|
|
Note that this trainer runs on the driver process on a single CPU/GPU node.
|
|
"""
|
|
|
|
# TODO: support each role have individual ray_worker_group_cls,
|
|
# i.e., support different backend of different role
|
|
def __init__(self,
|
|
config,
|
|
tokenizer,
|
|
role_worker_mapping: dict[Role, WorkerType],
|
|
resource_pool_manager: ResourcePoolManager,
|
|
ray_worker_group_cls: RayWorkerGroup = RayWorkerGroup,
|
|
reward_fn=None,
|
|
val_reward_fn=None):
|
|
|
|
# assert torch.cuda.is_available(), 'cuda must be available on driver'
|
|
|
|
self.tokenizer = tokenizer
|
|
self.config = config
|
|
self.reward_fn = reward_fn
|
|
self.val_reward_fn = val_reward_fn
|
|
|
|
self.hybrid_engine = config.actor_rollout_ref.hybrid_engine
|
|
assert self.hybrid_engine, 'Currently, only support hybrid engine'
|
|
|
|
if self.hybrid_engine:
|
|
assert Role.ActorRollout in role_worker_mapping, f'{role_worker_mapping.keys()=}'
|
|
|
|
self.role_worker_mapping = role_worker_mapping
|
|
self.resource_pool_manager = resource_pool_manager
|
|
self.use_reference_policy = Role.RefPolicy in role_worker_mapping
|
|
self.use_rm = Role.RewardModel in role_worker_mapping
|
|
self.ray_worker_group_cls = ray_worker_group_cls
|
|
|
|
# define KL control
|
|
if self.use_reference_policy:
|
|
if config.algorithm.kl_ctrl.type == 'fixed':
|
|
self.kl_ctrl = core_algos.FixedKLController(kl_coef=config.algorithm.kl_ctrl.kl_coef)
|
|
elif config.algorithm.kl_ctrl.type == 'adaptive':
|
|
assert config.algorithm.kl_ctrl.horizon > 0, f'horizon must be larger than 0. Got {config.critic.kl_ctrl.horizon}'
|
|
self.kl_ctrl = core_algos.AdaptiveKLController(init_kl_coef=config.algorithm.kl_ctrl.kl_coef,
|
|
target_kl=config.algorithm.kl_ctrl.target_kl,
|
|
horizon=config.algorithm.kl_ctrl.horizon)
|
|
else:
|
|
raise NotImplementedError
|
|
else:
|
|
self.kl_ctrl = core_algos.FixedKLController(kl_coef=0.)
|
|
|
|
self._create_dataloader()
|
|
self._init_logger()
|
|
|
|
def _init_logger(self):
|
|
from verl.utils.tracking import Tracking
|
|
self.logger = Tracking(project_name=self.config.trainer.project_name,
|
|
experiment_name=self.config.trainer.experiment_name,
|
|
default_backend=self.config.trainer.logger,
|
|
config=OmegaConf.to_container(self.config, resolve=True))
|
|
|
|
def _create_dataloader(self):
|
|
from torch.utils.data import DataLoader
|
|
# TODO: we have to make sure the batch size is divisible by the dp size
|
|
from verl.utils.dataset.rl_dataset import RLHFDataset, collate_fn
|
|
self.train_dataset = RLHFDataset(parquet_files=self.config.data.train_files,
|
|
tokenizer=self.tokenizer,
|
|
prompt_key=self.config.data.prompt_key,
|
|
max_prompt_length=self.config.data.max_prompt_length,
|
|
filter_prompts=True,
|
|
return_raw_chat=self.config.data.get('return_raw_chat', False),
|
|
truncation='error')
|
|
if self.config.data.train_data_num is not None:
|
|
if self.config.data.train_data_num > len(self.train_dataset.dataframe):
|
|
print(f"[WARNING] training dataset size is smaller than desired size. Using the dataset as the original size {len(self.train_dataset.dataframe)}")
|
|
else:
|
|
self.train_dataset.dataframe = self.train_dataset.dataframe.sample(self.config.data.train_data_num, random_state=42)
|
|
print(f"filtered training dataset size: {len(self.train_dataset.dataframe)}")
|
|
|
|
self.train_dataloader = DataLoader(dataset=self.train_dataset,
|
|
batch_size=self.config.data.train_batch_size,
|
|
shuffle=self.config.data.shuffle_train_dataloader,
|
|
drop_last=True,
|
|
collate_fn=collate_fn)
|
|
|
|
self.val_dataset = RLHFDataset(parquet_files=self.config.data.val_files,
|
|
tokenizer=self.tokenizer,
|
|
prompt_key=self.config.data.prompt_key,
|
|
max_prompt_length=self.config.data.max_prompt_length,
|
|
filter_prompts=True,
|
|
return_raw_chat=self.config.data.get('return_raw_chat', False),
|
|
truncation='error')
|
|
if self.config.data.val_data_num is not None:
|
|
if self.config.data.val_data_num > len(self.val_dataset.dataframe):
|
|
print(f"[WARNING] validation dataset size is smaller than desired size. Using the dataset as the original size {len(self.val_dataset.dataframe)}")
|
|
else:
|
|
self.val_dataset.dataframe = self.val_dataset.dataframe.sample(self.config.data.val_data_num, random_state=42)
|
|
print(f"filtered validation dataset size: {len(self.val_dataset.dataframe)}")
|
|
|
|
self.val_dataloader = DataLoader(dataset=self.val_dataset,
|
|
batch_size=self.config.data.val_batch_size,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
collate_fn=collate_fn)
|
|
|
|
print(f'Size of train dataloader: {len(self.train_dataloader)}')
|
|
print(f'Size of val dataloader: {len(self.val_dataloader)}')
|
|
|
|
assert len(self.train_dataloader) >= 1
|
|
assert len(self.val_dataloader) >= 1
|
|
|
|
# inject total_training_steps to actor/critic optim_config. This is hacky.
|
|
total_training_steps = len(self.train_dataloader) * self.config.trainer.total_epochs
|
|
|
|
if self.config.trainer.total_training_steps is not None:
|
|
total_training_steps = self.config.trainer.total_training_steps
|
|
|
|
self.total_training_steps = total_training_steps
|
|
print(f'Total training steps: {self.total_training_steps}')
|
|
|
|
OmegaConf.set_struct(self.config, True)
|
|
with open_dict(self.config):
|
|
self.config.actor_rollout_ref.actor.optim.total_training_steps = total_training_steps
|
|
self.config.critic.optim.total_training_steps = total_training_steps
|
|
|
|
def _validate(self):
|
|
"""
|
|
The training loop of PPO with global metric computation.
|
|
Accumulates metrics across all batches before computing final statistics.
|
|
"""
|
|
import torch
|
|
reward_tensor_lst = []
|
|
data_source_lst = []
|
|
|
|
gen_config = GenerationConfig(
|
|
max_turns=self.config.max_turns,
|
|
max_start_length=self.config.data.max_start_length,
|
|
max_prompt_length=self.config.data.max_prompt_length,
|
|
max_response_length=self.config.data.max_response_length,
|
|
max_obs_length=self.config.data.max_obs_length,
|
|
num_gpus=self.config.trainer.n_gpus_per_node,
|
|
no_think_rl=self.config.algorithm.no_think_rl,
|
|
search_url = self.config.retriever.url,
|
|
topk = self.config.retriever.topk,
|
|
)
|
|
|
|
# Agent config preparation
|
|
generation_manager = LLMGenerationManager(
|
|
tokenizer=self.tokenizer,
|
|
actor_rollout_wg=self.actor_rollout_wg,
|
|
config=gen_config,
|
|
is_validation = True,
|
|
)
|
|
|
|
if not self.config.do_search:
|
|
for test_data in self.val_dataloader:
|
|
test_batch = DataProto.from_single_dict(test_data)
|
|
|
|
# we only do validation on rule-based rm
|
|
if self.config.reward_model.enable and test_batch[0].non_tensor_batch['reward_model']['style'] == 'model':
|
|
return {}
|
|
|
|
test_gen_batch = test_batch.pop(['input_ids', 'attention_mask', 'position_ids'])
|
|
test_gen_batch.meta_info = {
|
|
'eos_token_id': self.tokenizer.eos_token_id,
|
|
'pad_token_id': self.tokenizer.pad_token_id,
|
|
'recompute_log_prob': False,
|
|
'do_sample': False,
|
|
'validate': True,
|
|
}
|
|
|
|
# pad to be divisible by dp_size
|
|
test_gen_batch_padded, pad_size = pad_dataproto_to_divisor(test_gen_batch, self.actor_rollout_wg.world_size)
|
|
test_output_gen_batch_padded = self.actor_rollout_wg.generate_sequences(test_gen_batch_padded)
|
|
# unpad
|
|
test_output_gen_batch = unpad_dataproto(test_output_gen_batch_padded, pad_size=pad_size)
|
|
print('validation generation end')
|
|
|
|
test_batch = test_batch.union(test_output_gen_batch)
|
|
|
|
# evaluate using reward_function
|
|
# for certain reward function (e.g. sandbox), the generation can overlap with reward
|
|
reward_tensor = self.val_reward_fn(test_batch)
|
|
|
|
reward_tensor_lst.append(reward_tensor)
|
|
data_source_lst.append(test_batch.non_tensor_batch.get('data_source', ['unknown'] * reward_tensor.shape[0]))
|
|
else:
|
|
for batch_dict in self.val_dataloader:
|
|
timing_raw = {}
|
|
test_batch: DataProto = DataProto.from_single_dict(batch_dict)
|
|
# test_batch = test_batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n_agent, interleave=True)
|
|
|
|
test_gen_batch = test_batch.pop(batch_keys=['input_ids', 'attention_mask', 'position_ids'])
|
|
test_gen_batch.meta_info = {
|
|
'eos_token_id': self.tokenizer.eos_token_id,
|
|
'pad_token_id': self.tokenizer.pad_token_id,
|
|
'recompute_log_prob': False,
|
|
'do_sample': False,
|
|
'validate': True,
|
|
}
|
|
with _timer('step', timing_raw):
|
|
first_input_ids = test_gen_batch.batch['input_ids'][:, -gen_config.max_start_length:].clone()
|
|
with _timer('gen', timing_raw):
|
|
generation_manager.timing_raw = timing_raw
|
|
final_gen_batch_output = generation_manager.run_llm_loop(
|
|
gen_batch=test_gen_batch,
|
|
initial_input_ids=first_input_ids,
|
|
)
|
|
|
|
test_batch = test_batch.union(final_gen_batch_output)
|
|
|
|
for key in test_batch.batch.keys():
|
|
test_batch.batch[key] = test_batch.batch[key].long()
|
|
|
|
# evaluate using reward_function
|
|
# for certain reward function (e.g. sandbox), the generation can overlap with reward
|
|
try:
|
|
reward_tensor = self.val_reward_fn(test_batch)
|
|
except:
|
|
print(test_batch)
|
|
exit()
|
|
|
|
reward_tensor_lst.append(reward_tensor)
|
|
data_source_lst.append(test_batch.non_tensor_batch.get('data_source', ['unknown'] * reward_tensor.shape[0]))
|
|
|
|
reward_tensor = torch.cat([rw.sum(-1) for rw in reward_tensor_lst], dim=0).cpu() # (batch_size,)
|
|
# reward_tensor = torch.cat(reward_tensor_lst, dim=0).sum(-1).cpu() # (batch_size,)
|
|
data_sources = np.concatenate(data_source_lst, axis=0)
|
|
# evaluate test_score based on data source
|
|
data_source_reward = {}
|
|
for i in range(reward_tensor.shape[0]):
|
|
data_source = data_sources[i]
|
|
if data_source not in data_source_reward:
|
|
data_source_reward[data_source] = []
|
|
data_source_reward[data_source].append(reward_tensor[i].item())
|
|
|
|
metric_dict = {}
|
|
for data_source, rewards in data_source_reward.items():
|
|
metric_dict[f'val/test_score/{data_source}'] = np.mean(rewards)
|
|
|
|
return metric_dict
|
|
|
|
|
|
def init_workers(self):
|
|
"""Init resource pool and worker group"""
|
|
self.resource_pool_manager.create_resource_pool()
|
|
|
|
self.resource_pool_to_cls = {pool: {} for pool in self.resource_pool_manager.resource_pool_dict.values()}
|
|
|
|
# create actor and rollout
|
|
if self.hybrid_engine:
|
|
resource_pool = self.resource_pool_manager.get_resource_pool(Role.ActorRollout)
|
|
actor_rollout_cls = RayClassWithInitArgs(cls=self.role_worker_mapping[Role.ActorRollout],
|
|
config=self.config.actor_rollout_ref,
|
|
role='actor_rollout')
|
|
self.resource_pool_to_cls[resource_pool]['actor_rollout'] = actor_rollout_cls
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
# create critic
|
|
if self.config.algorithm.adv_estimator == 'gae':
|
|
resource_pool = self.resource_pool_manager.get_resource_pool(Role.Critic)
|
|
critic_cls = RayClassWithInitArgs(cls=self.role_worker_mapping[Role.Critic], config=self.config.critic)
|
|
self.resource_pool_to_cls[resource_pool]['critic'] = critic_cls
|
|
self.use_critic = True
|
|
|
|
elif self.config.algorithm.adv_estimator == 'grpo':
|
|
self.use_critic = False
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
# create reference policy if needed
|
|
if self.use_reference_policy:
|
|
resource_pool = self.resource_pool_manager.get_resource_pool(Role.RefPolicy)
|
|
ref_policy_cls = RayClassWithInitArgs(self.role_worker_mapping[Role.RefPolicy],
|
|
config=self.config.actor_rollout_ref,
|
|
role='ref')
|
|
self.resource_pool_to_cls[resource_pool]['ref'] = ref_policy_cls
|
|
|
|
# create a reward model if reward_fn is None
|
|
if self.use_rm:
|
|
# we create a RM here
|
|
resource_pool = self.resource_pool_manager.get_resource_pool(Role.RewardModel)
|
|
rm_cls = RayClassWithInitArgs(self.role_worker_mapping[Role.RewardModel], config=self.config.reward_model)
|
|
self.resource_pool_to_cls[resource_pool]['rm'] = rm_cls
|
|
|
|
# initialize WorkerGroup
|
|
# NOTE: if you want to use a different resource pool for each role, which can support different parallel size,
|
|
# you should not use `create_colocated_worker_cls`. Instead, directly pass different resource pool to different worker groups.
|
|
# See https://github.com/volcengine/verl/blob/master/examples/ray/tutorial.ipynb for more information.
|
|
all_wg = {}
|
|
self.wg_dicts = []
|
|
for resource_pool, class_dict in self.resource_pool_to_cls.items():
|
|
worker_dict_cls = create_colocated_worker_cls(class_dict=class_dict)
|
|
wg_dict = self.ray_worker_group_cls(resource_pool=resource_pool, ray_cls_with_init=worker_dict_cls)
|
|
spawn_wg = wg_dict.spawn(prefix_set=class_dict.keys())
|
|
all_wg.update(spawn_wg)
|
|
# keep the referece of WorkerDict to support ray >= 2.31. Ref: https://github.com/ray-project/ray/pull/45699
|
|
self.wg_dicts.append(wg_dict)
|
|
|
|
if self.use_critic:
|
|
self.critic_wg = all_wg['critic']
|
|
self.critic_wg.init_model()
|
|
|
|
if self.use_reference_policy:
|
|
self.ref_policy_wg = all_wg['ref']
|
|
self.ref_policy_wg.init_model()
|
|
|
|
if self.use_rm:
|
|
self.rm_wg = all_wg['rm']
|
|
self.rm_wg.init_model()
|
|
|
|
# we should create rollout at the end so that vllm can have a better estimation of kv cache memory
|
|
self.actor_rollout_wg = all_wg['actor_rollout']
|
|
self.actor_rollout_wg.init_model()
|
|
|
|
def _save_checkpoint(self):
|
|
actor_local_path = os.path.join(self.config.trainer.default_local_dir, 'actor',
|
|
f'global_step_{self.global_steps}')
|
|
actor_remote_path = None if self.config.trainer.default_hdfs_dir is None else os.path.join(
|
|
self.config.trainer.default_hdfs_dir, 'actor')
|
|
self.actor_rollout_wg.save_checkpoint(actor_local_path, actor_remote_path)
|
|
|
|
if self.use_critic:
|
|
critic_local_path = os.path.join(self.config.trainer.default_local_dir, 'critic',
|
|
f'global_step_{self.global_steps}')
|
|
critic_remote_path = None if self.config.trainer.default_hdfs_dir is None else os.path.join(
|
|
self.config.trainer.default_hdfs_dir, 'critic')
|
|
self.critic_wg.save_checkpoint(critic_local_path, critic_remote_path)
|
|
|
|
def _balance_batch(self, batch: DataProto, metrics, logging_prefix='global_seqlen'):
|
|
"""Reorder the data on single controller such that each dp rank gets similar total tokens"""
|
|
attention_mask = batch.batch['attention_mask']
|
|
batch_size = attention_mask.shape[0]
|
|
global_seqlen_lst = attention_mask.view(batch_size, -1).sum(-1).tolist() # (train_batch_size,)
|
|
world_size = self.actor_rollout_wg.world_size
|
|
global_partition_lst = get_seqlen_balanced_partitions(global_seqlen_lst,
|
|
k_partitions=world_size,
|
|
equal_size=True)
|
|
# reorder based on index. The data will be automatically equally partitioned by dispatch function
|
|
global_idx = torch.tensor([j for partition in global_partition_lst for j in partition])
|
|
batch.reorder(global_idx)
|
|
global_balance_stats = log_seqlen_unbalance(seqlen_list=global_seqlen_lst,
|
|
partitions=global_partition_lst,
|
|
prefix=logging_prefix)
|
|
metrics.update(global_balance_stats)
|
|
|
|
def fit(self):
|
|
"""
|
|
The training loop of PPO.
|
|
The driver process only need to call the compute functions of the worker group through RPC to construct the PPO dataflow.
|
|
The light-weight advantage computation is done on the driver process.
|
|
"""
|
|
|
|
logger = self.logger
|
|
self.global_steps = 0
|
|
# perform validation before training
|
|
# currently, we only support validation using the reward_function.
|
|
if self.val_reward_fn is not None and self.config.trainer.get('val_before_train', True):
|
|
val_metrics = self._validate()
|
|
pprint(f'Initial validation metrics: {val_metrics}')
|
|
logger.log(data=val_metrics, step=self.global_steps)
|
|
if self.config.trainer.get('val_only', False):
|
|
return
|
|
|
|
# we start from step 1
|
|
self.global_steps += 1
|
|
|
|
# Agent config preparation
|
|
gen_config = GenerationConfig(
|
|
max_turns=self.config.max_turns,
|
|
max_start_length=self.config.data.max_start_length,
|
|
max_prompt_length=self.config.data.max_prompt_length,
|
|
max_response_length=self.config.data.max_response_length,
|
|
max_obs_length=self.config.data.max_obs_length,
|
|
num_gpus=self.config.trainer.n_gpus_per_node,
|
|
no_think_rl=self.config.algorithm.no_think_rl,
|
|
search_url = self.config.retriever.url,
|
|
topk = self.config.retriever.topk,
|
|
)
|
|
|
|
generation_manager = LLMGenerationManager(
|
|
tokenizer=self.tokenizer,
|
|
actor_rollout_wg=self.actor_rollout_wg,
|
|
config=gen_config,
|
|
)
|
|
|
|
# start training loop
|
|
for epoch in range(self.config.trainer.total_epochs):
|
|
for batch_dict in self.train_dataloader:
|
|
print(f'epoch {epoch}, step {self.global_steps}')
|
|
metrics = {}
|
|
timing_raw = {}
|
|
|
|
batch: DataProto = DataProto.from_single_dict(batch_dict)
|
|
batch = batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n_agent, interleave=True)
|
|
|
|
# pop those keys for generation
|
|
gen_batch = batch.pop(batch_keys=['input_ids', 'attention_mask', 'position_ids'])
|
|
|
|
####################
|
|
# original code here
|
|
|
|
with _timer('step', timing_raw):
|
|
if not self.config.do_search:
|
|
gen_batch_output = self.actor_rollout_wg.generate_sequences(gen_batch)
|
|
|
|
batch.non_tensor_batch['uid'] = np.array([str(uuid.uuid4()) for _ in range(len(batch.batch))],
|
|
dtype=object)
|
|
# repeat to align with repeated responses in rollout
|
|
batch = batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n, interleave=True)
|
|
batch = batch.union(gen_batch_output)
|
|
|
|
####################
|
|
# Below is aLL about agents - the "LLM + forloop"
|
|
####################
|
|
# with _timer('step', timing_raw):
|
|
else:
|
|
first_input_ids = gen_batch.batch['input_ids'][:, -gen_config.max_start_length:].clone().long()
|
|
|
|
with _timer('gen', timing_raw):
|
|
generation_manager.timing_raw = timing_raw
|
|
final_gen_batch_output = generation_manager.run_llm_loop(
|
|
gen_batch=gen_batch,
|
|
initial_input_ids=first_input_ids,
|
|
)
|
|
|
|
# final_gen_batch_output.batch.apply(lambda x: x.long(), inplace=True)
|
|
for key in final_gen_batch_output.batch.keys():
|
|
final_gen_batch_output.batch[key] = final_gen_batch_output.batch[key].long()
|
|
|
|
with torch.no_grad():
|
|
try:
|
|
output = self.actor_rollout_wg.compute_log_prob(final_gen_batch_output)
|
|
final_gen_batch_output = final_gen_batch_output.union(output)
|
|
except:
|
|
print('############### here ###################')
|
|
print(final_gen_batch_output)
|
|
|
|
batch.non_tensor_batch['uid'] = np.array([str(uuid.uuid4()) for _ in range(len(batch.batch))],
|
|
dtype=object)
|
|
|
|
# repeat to align with repeated responses in rollout
|
|
batch = batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n, interleave=True)
|
|
batch = batch.union(final_gen_batch_output)
|
|
|
|
####################
|
|
####################
|
|
|
|
# balance the number of valid tokens on each dp rank.
|
|
# Note that this breaks the order of data inside the batch.
|
|
# Please take care when you implement group based adv computation such as GRPO and rloo
|
|
self._balance_batch(batch, metrics=metrics)
|
|
|
|
# compute global_valid tokens
|
|
batch.meta_info['global_token_num'] = torch.sum(batch.batch['attention_mask'], dim=-1).tolist()
|
|
|
|
# batch.batch.apply(lambda x, key: x.long() if key != "old_log_probs" else x, inplace=True, key=True)
|
|
for key in batch.batch.keys():
|
|
if key != 'old_log_probs':
|
|
batch.batch[key] = batch.batch[key].long()
|
|
|
|
if self.use_reference_policy:
|
|
# compute reference log_prob
|
|
with _timer('ref', timing_raw):
|
|
try:
|
|
ref_log_prob = self.ref_policy_wg.compute_ref_log_prob(batch)
|
|
batch = batch.union(ref_log_prob)
|
|
except:
|
|
print('################## herehere ################')
|
|
print(batch)
|
|
|
|
# compute values
|
|
if self.use_critic:
|
|
with _timer('values', timing_raw):
|
|
values = self.critic_wg.compute_values(batch)
|
|
batch = batch.union(values)
|
|
|
|
with _timer('adv', timing_raw):
|
|
# compute scores. Support both model and function-based.
|
|
# We first compute the scores using reward model. Then, we call reward_fn to combine
|
|
# the results from reward model and rule-based results.
|
|
if self.use_rm:
|
|
# we first compute reward model score
|
|
reward_tensor = self.rm_wg.compute_rm_score(batch)
|
|
batch = batch.union(reward_tensor)
|
|
|
|
# we combine with rule-based rm
|
|
reward_tensor = self.reward_fn(batch)
|
|
batch.batch['token_level_scores'] = reward_tensor
|
|
|
|
# compute rewards. apply_kl_penalty if available
|
|
if not self.config.actor_rollout_ref.actor.use_kl_loss:
|
|
batch, kl_metrics = apply_kl_penalty(batch,
|
|
kl_ctrl=self.kl_ctrl,
|
|
kl_penalty=self.config.algorithm.kl_penalty)
|
|
metrics.update(kl_metrics)
|
|
else:
|
|
batch.batch['token_level_rewards'] = batch.batch['token_level_scores']
|
|
|
|
# compute advantages, executed on the driver process
|
|
batch = compute_advantage(batch,
|
|
adv_estimator=self.config.algorithm.adv_estimator,
|
|
gamma=self.config.algorithm.gamma,
|
|
lam=self.config.algorithm.lam,
|
|
num_repeat=self.config.actor_rollout_ref.rollout.n)
|
|
|
|
# update critic
|
|
if self.use_critic:
|
|
with _timer('update_critic', timing_raw):
|
|
critic_output = self.critic_wg.update_critic(batch)
|
|
critic_output_metrics = reduce_metrics(critic_output.meta_info['metrics'])
|
|
metrics.update(critic_output_metrics)
|
|
|
|
# implement critic warmup
|
|
if self.config.trainer.critic_warmup <= self.global_steps:
|
|
# update actor
|
|
with _timer('update_actor', timing_raw):
|
|
if self.config.do_search and self.config.actor_rollout_ref.actor.state_masking:
|
|
batch, metrics = self._create_loss_mask(batch, metrics)
|
|
actor_output = self.actor_rollout_wg.update_actor(batch)
|
|
actor_output_metrics = reduce_metrics(actor_output.meta_info['metrics'])
|
|
metrics.update(actor_output_metrics)
|
|
|
|
# validate
|
|
if self.val_reward_fn is not None and self.config.trainer.test_freq > 0 and \
|
|
self.global_steps % self.config.trainer.test_freq == 0:
|
|
with _timer('testing', timing_raw):
|
|
val_metrics: dict = self._validate()
|
|
metrics.update(val_metrics)
|
|
|
|
if self.config.trainer.save_freq > 0 and \
|
|
self.global_steps % self.config.trainer.save_freq == 0:
|
|
with _timer('save_checkpoint', timing_raw):
|
|
self._save_checkpoint()
|
|
|
|
# collect metrics
|
|
metrics.update(compute_data_metrics(batch=batch, use_critic=self.use_critic))
|
|
metrics.update(compute_timing_metrics(batch=batch, timing_raw=timing_raw))
|
|
|
|
# TODO: make a canonical logger that supports various backend
|
|
logger.log(data=metrics, step=self.global_steps)
|
|
|
|
self.global_steps += 1
|
|
|
|
if self.global_steps >= self.total_training_steps:
|
|
|
|
# perform validation after training
|
|
if self.val_reward_fn is not None:
|
|
val_metrics = self._validate()
|
|
pprint(f'Final validation metrics: {val_metrics}')
|
|
logger.log(data=val_metrics, step=self.global_steps)
|
|
return
|
|
|
|
def _create_loss_mask(self, batch, metrics):
|
|
"""Create loss mask for state tokens."""
|
|
response_length = batch.batch['responses'].shape[-1]
|
|
response_mask = batch.batch['attention_mask'][:, -response_length:]
|
|
|
|
loss_mask = batch.batch['info_mask'][:, -response_length:]
|
|
batch.batch['loss_mask'] = loss_mask
|
|
|
|
metrics.update({
|
|
'state_tokens/total': loss_mask.sum().item(),
|
|
'state_tokens/coverage': (loss_mask.sum() / response_mask.sum()).item(),
|
|
})
|
|
|
|
return batch, metrics
|