Files
Search-R1/example/multinode/train_grpo_multinode_32b.sh
2025-04-11 13:19:26 +00:00

78 lines
3.2 KiB
Bash

data_name=nq_hotpotqa_train
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export DATA_DIR=data/${data_name} # first download the data from https://huggingface.co/datasets/PeterJinGo/nq_hotpotqa_train
WAND_PROJECT="Search-R1"
RAY_DASHBOARD_ADDRESS="http://xx.xx.xx.xx:8265" # your head node address
N_NODES=4
export BASE_MODEL='Qwen/Qwen2.5-32B'
export EXPERIMENT_NAME=${train_data}-${test_data}-search-r1-grpo-qwen2.5-32b-em-multinode-${N_NODES}
# set -x
export VLLM_ATTENTION_BACKEND=XFORMERS # vllm + qwen2-7b with flash_attn has some issues
# max_prompt_length = (config['training']['max_start_length'] + config['training']['max_response_length'] * (config['training']['max_turns'] - 1) + config['training']['max_obs_length'] * config['training']['max_turns'])
ulimit -n 65535
ray job submit --address=$RAY_DASHBOARD_ADDRESS \
--runtime-env=verl/trainer/runtime_env.yaml \
--no-wait \
-- \
python3 -m verl.trainer.main_ppo \
data.train_files=$DATA_DIR/train.parquet \
data.val_files=$DATA_DIR/test.parquet \
data.train_data_num=null \
data.val_data_num=null \
data.train_batch_size=512 \
data.val_batch_size=256 \
data.max_prompt_length=4096 \
data.max_response_length=500 \
data.max_start_length=2048 \
data.max_obs_length=500 \
data.shuffle_train_dataloader=True \
algorithm.adv_estimator=grpo \
actor_rollout_ref.model.path=$BASE_MODEL \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.optim.lr=2e-7 \
actor_rollout_ref.actor.optim.lr_warmup_steps_ratio=0.285 \
actor_rollout_ref.actor.use_kl_loss=True \
actor_rollout_ref.actor.ppo_mini_batch_size=256 \
actor_rollout_ref.actor.ppo_micro_batch_size=64 \
actor_rollout_ref.actor.fsdp_config.param_offload=false \
actor_rollout_ref.actor.fsdp_config.grad_offload=false \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=false \
actor_rollout_ref.rollout.log_prob_micro_batch_size=128 \
actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.gpu_memory_utilization=0.5 \
actor_rollout_ref.ref.log_prob_micro_batch_size=128 \
actor_rollout_ref.ref.fsdp_config.param_offload=false \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
algorithm.no_think_rl=false \
actor_rollout_ref.rollout.n_agent=5 \
actor_rollout_ref.rollout.temperature=1 \
actor_rollout_ref.actor.state_masking=True \
trainer.logger=['wandb'] \
+trainer.val_only=false \
+trainer.val_before_train=false \
trainer.default_hdfs_dir=null \
trainer.n_gpus_per_node=8 \
trainer.nnodes=$N_NODES \
trainer.save_freq=100 \
trainer.test_freq=100 \
trainer.project_name=$WAND_PROJECT \
trainer.experiment_name=$EXPERIMENT_NAME \
trainer.total_epochs=15 \
trainer.total_training_steps=1005 \
trainer.default_hdfs_dir=null \
trainer.default_local_dir=verl_checkpoints/$EXPERIMENT_NAME \
max_turns=4 \
retriever.url="http://127.0.0.1:8000/retrieve" \
retriever.topk=3 \
2>&1 | tee $EXPERIMENT_NAME.log