76 lines
2.9 KiB
Bash
76 lines
2.9 KiB
Bash
data_name=nq_hotpotqa_train
|
|
|
|
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
|
export DATA_DIR=data/${data_name} # first download the data from https://huggingface.co/datasets/PeterJinGo/nq_hotpotqa_train
|
|
|
|
WAND_PROJECT="Search-R1"
|
|
RAY_DASHBOARD_ADDRESS="http://xx.xx.xx.xx:8265" # your head node address
|
|
N_NODES=4
|
|
|
|
export BASE_MODEL='Qwen/Qwen2.5-72B'
|
|
export EXPERIMENT_NAME=${train_data}-${test_data}-search-r1-grpo-qwen2.5-72b-em-multinode-${N_NODES}
|
|
|
|
# set -x
|
|
export VLLM_ATTENTION_BACKEND=XFORMERS # vllm + qwen2-7b with flash_attn has some issues
|
|
|
|
ulimit -n 65535
|
|
|
|
ray job submit --address=$RAY_DASHBOARD_ADDRESS \
|
|
--runtime-env=verl/trainer/runtime_env.yaml \
|
|
--no-wait \
|
|
-- \
|
|
python3 -m verl.trainer.main_ppo \
|
|
data.train_files=$DATA_DIR/train.parquet \
|
|
data.val_files=$DATA_DIR/test.parquet \
|
|
data.train_data_num=null \
|
|
data.val_data_num=null \
|
|
data.train_batch_size=512 \
|
|
data.val_batch_size=256 \
|
|
data.max_prompt_length=4096 \
|
|
data.max_response_length=500 \
|
|
data.max_start_length=2048 \
|
|
data.max_obs_length=500 \
|
|
data.shuffle_train_dataloader=True \
|
|
algorithm.adv_estimator=grpo \
|
|
actor_rollout_ref.model.path=$BASE_MODEL \
|
|
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
|
actor_rollout_ref.model.use_remove_padding=True \
|
|
actor_rollout_ref.actor.optim.lr=1e-7 \
|
|
actor_rollout_ref.actor.optim.lr_warmup_steps_ratio=0.285 \
|
|
actor_rollout_ref.actor.use_kl_loss=True \
|
|
actor_rollout_ref.actor.ppo_mini_batch_size=256 \
|
|
actor_rollout_ref.actor.ppo_micro_batch_size=32 \
|
|
actor_rollout_ref.actor.fsdp_config.param_offload=True \
|
|
actor_rollout_ref.actor.fsdp_config.grad_offload=True \
|
|
actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \
|
|
actor_rollout_ref.rollout.log_prob_micro_batch_size=32 \
|
|
actor_rollout_ref.rollout.tensor_model_parallel_size=4 \
|
|
actor_rollout_ref.rollout.name=vllm \
|
|
actor_rollout_ref.rollout.gpu_memory_utilization=0.5 \
|
|
actor_rollout_ref.ref.log_prob_micro_batch_size=32 \
|
|
actor_rollout_ref.ref.fsdp_config.param_offload=True \
|
|
actor_rollout_ref.actor.kl_loss_coef=0.001 \
|
|
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
|
|
algorithm.no_think_rl=false \
|
|
actor_rollout_ref.rollout.n_agent=5 \
|
|
actor_rollout_ref.rollout.temperature=1 \
|
|
actor_rollout_ref.actor.state_masking=True \
|
|
trainer.logger=['wandb'] \
|
|
+trainer.val_only=false \
|
|
+trainer.val_before_train=false \
|
|
trainer.default_hdfs_dir=null \
|
|
trainer.n_gpus_per_node=8 \
|
|
trainer.nnodes=$N_NODES \
|
|
trainer.save_freq=100 \
|
|
trainer.test_freq=100 \
|
|
trainer.project_name=$WAND_PROJECT \
|
|
trainer.experiment_name=$EXPERIMENT_NAME \
|
|
trainer.total_epochs=15 \
|
|
trainer.total_training_steps=1005 \
|
|
trainer.default_hdfs_dir=null \
|
|
trainer.default_local_dir=verl_checkpoints/$EXPERIMENT_NAME \
|
|
max_turns=4 \
|
|
retriever.url="http://127.0.0.1:8000/retrieve" \
|
|
retriever.topk=3 \
|
|
2>&1 | tee $EXPERIMENT_NAME.log
|