Files
Search-R1/verl/trainer/main_generation.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

138 lines
5.6 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Generate responses given a dataset of prompts
"""
import ray
import numpy as np
import hydra
import os
os.environ['NCCL_DEBUG'] = 'WARN'
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
# os.environ['TORCH_COMPILE_DISABLE'] = '1'
from verl.utils.model import compute_position_id_with_mask
import pandas as pd
from transformers import AutoTokenizer
from verl import DataProto
from verl.utils.fs import copy_local_path_from_hdfs
from verl.workers.fsdp_workers import ActorRolloutRefWorker
from verl.utils.hdfs_io import makedirs
from verl.single_controller.ray import RayClassWithInitArgs, RayResourcePool, RayWorkerGroup
@hydra.main(config_path='config', config_name='generation', version_base=None)
def main(config):
from pprint import pprint
from omegaconf import OmegaConf
pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values
OmegaConf.resolve(config)
local_path = copy_local_path_from_hdfs(config.model.path)
from verl.utils import hf_tokenizer
tokenizer = hf_tokenizer(local_path)
if config.rollout.temperature == 0.:
assert config.data.n_samples == 1, 'When temperature=0, n_samples must be 1.'
# read dataset. Note that the dataset should directly contain chat template format (e.g., a list of dictionary)
dataset = pd.read_parquet(config.data.path)
chat_lst = dataset[config.data.prompt_key].tolist()
chat_lst = [chat.tolist() for chat in chat_lst]
tokenizer.padding_side = 'left'
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
ray_cls_with_init = RayClassWithInitArgs(cls=ray.remote(ActorRolloutRefWorker), config=config, role='rollout')
resource_pool = RayResourcePool(process_on_nodes=[config.trainer.n_gpus_per_node] * config.trainer.nnodes)
wg = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=ray_cls_with_init)
wg.init_model()
total_samples = len(dataset)
# real_batch_size = data.batch['input_ids'].shape[0]
config_batch_size = config.data.batch_size
dp_size = wg.world_size // config.rollout.tensor_model_parallel_size
num_batch = (total_samples // config_batch_size) + 1
output_lst = [[] for _ in range(config.data.n_samples)]
for batch_idx in range(num_batch):
print(f'[{batch_idx+1}/{num_batch}] Start to process.')
batch_chat_lst = chat_lst[batch_idx * config_batch_size:(batch_idx + 1) * config_batch_size]
inputs = tokenizer.apply_chat_template(batch_chat_lst,
add_generation_prompt=True,
padding=True,
truncation=True,
max_length=config.rollout.prompt_length,
return_tensors='pt',
return_dict=True,
tokenize=True)
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
position_ids = compute_position_id_with_mask(attention_mask)
batch_dict = {'input_ids': input_ids, 'attention_mask': attention_mask, 'position_ids': position_ids}
data = DataProto.from_dict(batch_dict)
real_batch_size = data.batch['input_ids'].shape[0]
if real_batch_size % dp_size != 0:
dummy_data_size = dp_size - real_batch_size % dp_size
dummy_data = data[:dummy_data_size]
data = DataProto.concat([data, dummy_data])
print(
f'dp_size {dp_size} is not divisible by real_batch_size {real_batch_size}, add {dummy_data_size} dummy data'
)
batch_size = data.batch['input_ids'].shape[0]
assert batch_size % dp_size == 0, f'batch_size {batch_size} is not divisible by dp_size {dp_size}'
print(f'[{batch_idx+1}/{num_batch}] Start to generate.')
# START TO GENERATE FOR n_samples TIMES
for i in range(config.data.n_samples):
output = wg.generate_sequences(data)
# remove dummy data
output = output[:real_batch_size]
output_text = tokenizer.batch_decode(output.batch['input_ids'][:, -config.rollout.response_length:],
skip_special_tokens=False)
# remove the padding
pad_token = tokenizer.pad_token
output_text_unpad = []
for text in output_text:
output_text_unpad.append(text.replace(pad_token, ''))
output_lst[i].extend(output_text_unpad)
# convert output_lst from (n_samples, n_data) to (n_data, n_sampels)
output_lst = np.array(output_lst, dtype=object)
output_lst = np.transpose(output_lst, axes=(1, 0)).tolist()
# add to the data frame
dataset[f'responses'] = output_lst
# write to a new parquet
output_dir = os.path.dirname(config.data.output_path)
makedirs(output_dir, exist_ok=True)
dataset.to_parquet(config.data.output_path)
return output_text
if __name__ == '__main__':
main()