Files
Search-R1/verl/workers/rollout/naive/naive_rollout.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

120 lines
4.7 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
In single GPU rollout, the sequences are generated directly by sampling from the model.
The output will contain
1. output_ids
2. attention_masks (left padding)
3. eos_masks
4. log_probs
"""
from typing import Iterable, Union
import torch
import torch.nn.functional as F
from tensordict import TensorDict
from torch import nn
from verl import DataProto
from verl.utils.torch_functional import logprobs_from_logits
from ..base import BaseRollout
__all__ = ['NativeRollout']
class NaiveRollout(BaseRollout):
def __init__(self, module: nn.Module, config):
"""A naive rollout. It requires the module to be compatible with huggingface APIs. That is:
The module should define __call__ to receive input_ids, attention_mask and position_ids.
It outputs a structure that contains logits field.
Args:
module: module here follows huggingface APIs
config: DictConfig
"""
super().__init__()
self.config = config
self.module = module
@torch.no_grad()
def generate_sequences(self, prompts: DataProto) -> DataProto:
"""Generate sequences"""
idx = prompts.batch['input_ids'] # (bs, prompt_length)
attention_mask = prompts.batch['attention_mask'] # left-padded attention_mask
position_ids = prompts.batch['position_ids']
# used to construct attention_mask
eos_token_id = prompts.meta_info['eos_token_id']
batch_size = idx.size(0)
prompt_length = idx.size(1)
self.module.eval()
prev_attention_mask = torch.ones(size=(batch_size, 1), dtype=attention_mask.dtype, device=attention_mask.device)
logits_lst = []
for _ in range(self.config.response_length):
# if the sequence context is growing too long we must crop it at block_size
# idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
idx_cond = idx
# forward the model to get the logits for the index in the sequence
# we use huggingface APIs here
output = self.module(input_ids=idx_cond, attention_mask=attention_mask, position_ids=position_ids)
logits = output.logits
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / self.config.temperature # (bs, vocab_size)
# optionally crop the logits to only the top k options
if self.config.top_k is not None:
v, _ = torch.topk(logits, min(self.config.top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
if self.config.do_sample:
idx_next = torch.multinomial(probs, num_samples=1)
else:
idx_next = torch.argmax(probs, dim=-1, keepdim=True)
attention_mask = torch.cat((attention_mask, prev_attention_mask), dim=-1)
prev_attention_mask = torch.logical_and(idx_next != eos_token_id, prev_attention_mask.bool())
prev_attention_mask.to(attention_mask.dtype)
position_ids = torch.cat((position_ids, position_ids[:, -1:] + 1), dim=-1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
logits_lst.append(logits)
logits = torch.stack(logits_lst, dim=1) # (bs, response_length, vocab_size)
prompts = idx[:, :prompt_length] # (bs, prompt_length)
response = idx[:, prompt_length:] # (bs, response_length)
log_probs = logprobs_from_logits(logits=logits, labels=response)
batch = TensorDict(
{
'input_ids': prompts,
'responses': response,
'sequences': idx,
'old_log_probs': log_probs,
'attention_mask': attention_mask,
'position_ids': position_ids,
},
batch_size=batch_size)
self.module.train()
return DataProto(batch=batch)