Files
Search-R1/search_r1/llm_agent/generation.py
PeterGriffinJin 83d10313be add action status
2025-03-19 22:19:27 +00:00

473 lines
19 KiB
Python

import torch
import re
from collections import defaultdict
import os
from typing import List, Dict, Any, Tuple
from dataclasses import dataclass
from .tensor_helper import TensorHelper, TensorConfig
# from search_r1.utils import set_seed
# from search_r1.utils.plot import (
# save_trajectory_to_output,
# parse_llm_output
# )
from verl import DataProto
from verl.utils.tracking import Tracking
import shutil
import requests
@dataclass
class GenerationConfig:
max_turns: int
max_start_length: int
max_prompt_length: int
max_response_length: int
max_obs_length: int
# logging: dict
num_gpus: int
no_think_rl: bool=False
search_url: str = None
topk: int = 3
class LLMGenerationManager:
def __init__(
self,
tokenizer,
actor_rollout_wg,
config: GenerationConfig,
# logger: Tracking,
is_validation: bool = False,
):
self.tokenizer = tokenizer
self.actor_rollout_wg = actor_rollout_wg
self.config = config
# self.logger = logger
self.is_validation = is_validation
self.tensor_fn = TensorHelper(TensorConfig(
pad_token_id=tokenizer.pad_token_id,
max_prompt_length=config.max_prompt_length,
max_obs_length=config.max_obs_length,
max_start_length=config.max_start_length
))
def _batch_tokenize(self, responses: List[str]) -> torch.Tensor:
"""Tokenize a batch of responses."""
return self.tokenizer(
responses,
add_special_tokens=False,
return_tensors='pt',
padding="longest"
)['input_ids']
def _postprocess_responses(self, responses: torch.Tensor) -> torch.Tensor:
"""Process responses to stop at search operation or answer operation."""
responses_str = self.tokenizer.batch_decode(
responses,
skip_special_tokens=True
)
responses_str = [resp.split('</search>')[0] + '</search>'
if '</search>' in resp
else resp.split('</answer>')[0] + '</answer>'
if '</answer>' in resp
else resp
for resp in responses_str]
if self.config.no_think_rl:
raise ValueError('stop')
# if no_think_rl is enabled, only keep action in the str
actions, _ = self.env.postprocess_predictions(responses_str)
responses_str=[f"<answer>{envs[idx].ACTION_LOOKUP[action]}</answer>" for idx, action in enumerate(actions)]
print("RESPONSES:", responses_str)
responses = self._batch_tokenize(responses_str)
return responses, responses_str
def _process_next_obs(self, next_obs: List[str]) -> torch.Tensor:
"""Process next observations from environment."""
next_obs_ids = self.tokenizer(
next_obs,
padding='longest',
return_tensors='pt',
add_special_tokens=False, # Prevents adding special tokens
)['input_ids']
if next_obs_ids.shape[1] > self.config.max_obs_length:
print(f"[WARNING] OBSERVATION TOO LONG, CONSIDER CHANGING YOUR CONFIG, {next_obs_ids.shape[1]} & {self.config.max_obs_length}")
next_obs_ids = next_obs_ids[:, :self.config.max_obs_length]
return next_obs_ids
def _update_rolling_state(self, rollings: DataProto, cur_responses: torch.Tensor,
next_obs_ids: torch.Tensor) -> Dict:
"""Update rolling state with new responses and observations."""
# Concatenate and handle padding
new_input_ids = self.tensor_fn.concatenate_with_padding([
rollings.batch['input_ids'],
cur_responses,
next_obs_ids
])
# Create attention mask and position ids
new_attention_mask = self.tensor_fn.create_attention_mask(new_input_ids)
new_position_ids = self.tensor_fn.create_position_ids(new_attention_mask)
# Cut to appropriate length
effective_len = new_attention_mask.sum(dim=1).max()
max_len = min(self.config.max_prompt_length, effective_len)
new_rollings = DataProto.from_dict({
'input_ids': new_input_ids[:, -max_len:],
'position_ids': new_position_ids[:, -max_len:],
'attention_mask': new_attention_mask[:, -max_len:]
})
new_rollings.meta_info.update(rollings.meta_info)
return new_rollings
def _info_masked_concatenate_with_padding(self,
prompt: torch.Tensor,
prompt_with_mask: torch.Tensor,
response: torch.Tensor,
info: torch.Tensor = None,
pad_to_left: bool = True
) -> torch.Tensor:
"""Concatenate tensors and handle padding. Additionally, create a mask (info_mask) to cover the information block if it exists."""
pad_id = self.tokenizer.pad_token_id
tensors = [prompt, response]
tensors_with_mask = [prompt_with_mask, response]
if info is not None:
tensors.append(info)
info_mask = torch.full(info.size(), pad_id, dtype=info.dtype, device=info.device) # information mask
tensors_with_mask.append(info_mask)
concatenated = torch.cat(tensors, dim=1)
concatenated_with_info = torch.cat(tensors_with_mask, dim=1)
mask = concatenated != pad_id if pad_to_left else concatenated == pad_id
sorted_indices = mask.to(torch.int64).argsort(dim=1, stable=True)
padded_tensor = concatenated.gather(1, sorted_indices)
padded_tensor_with_info = concatenated_with_info.gather(1, sorted_indices)
return padded_tensor, padded_tensor_with_info
def _update_right_side(self, right_side: Dict,
cur_responses: torch.Tensor,
next_obs_ids: torch.Tensor = None) -> Dict:
"""Update right side state."""
if next_obs_ids != None:
responses, responses_with_info_mask = self._info_masked_concatenate_with_padding(
right_side['responses'],
right_side['responses_with_info_mask'],
cur_responses,
next_obs_ids,
pad_to_left=False
)
else:
responses, responses_with_info_mask = self._info_masked_concatenate_with_padding(
right_side['responses'],
right_side['responses_with_info_mask'],
cur_responses,
pad_to_left=False
)
effective_len = self.tensor_fn.create_attention_mask(responses).sum(dim=1).max()
max_len = min(self.config.max_prompt_length, effective_len)
return {'responses': responses[:, :max_len], 'responses_with_info_mask': responses_with_info_mask[:, :max_len]}
def _generate_with_gpu_padding(self, active_batch: DataProto) -> DataProto:
"""
Wrapper for generation that handles multi-GPU padding requirements.
if num_gpus <= 1, return self.actor_rollout_wg.generate_sequences(active_batch)
if active_batch size is not divisible by num_gpus, pad with first sequence
then remove padding from output
"""
num_gpus = self.config.num_gpus
if num_gpus <= 1:
return self.actor_rollout_wg.generate_sequences(active_batch)
batch_size = active_batch.batch['input_ids'].shape[0]
remainder = batch_size % num_gpus
if remainder == 0:
return self.actor_rollout_wg.generate_sequences(active_batch)
# Add padding sequences
padding_size = num_gpus - remainder
padded_batch = {}
for k, v in active_batch.batch.items():
# Use first sequence as padding template
pad_sequence = v[0:1].repeat(padding_size, *[1] * (len(v.shape) - 1))
padded_batch[k] = torch.cat([v, pad_sequence], dim=0)
padded_active_batch = DataProto.from_dict(padded_batch)
# Generate with padded batch
padded_output = self.actor_rollout_wg.generate_sequences(padded_active_batch)
# Remove padding from output
trimmed_batch = {k: v[:-padding_size] for k, v in padded_output.batch.items()}
# Handle meta_info if present
if hasattr(padded_output, 'meta_info') and padded_output.meta_info:
trimmed_meta = {}
for k, v in padded_output.meta_info.items():
if isinstance(v, torch.Tensor):
trimmed_meta[k] = v[:-padding_size]
else:
trimmed_meta[k] = v
padded_output.meta_info = trimmed_meta
padded_output.batch = trimmed_batch
return padded_output
def run_llm_loop(self, gen_batch, initial_input_ids: torch.Tensor) -> Tuple[Dict, Dict]:
"""Run main LLM generation loop."""
original_left_side = {'input_ids': initial_input_ids[:, -self.config.max_start_length:]}
original_right_side = {'responses': initial_input_ids[:, []], 'responses_with_info_mask': initial_input_ids[:, []]}
active_mask = torch.ones(gen_batch.batch['input_ids'].shape[0], dtype=torch.bool)
turns_stats = torch.ones(gen_batch.batch['input_ids'].shape[0], dtype=torch.int)
valid_action_stats = torch.zeros(gen_batch.batch['input_ids'].shape[0], dtype=torch.int)
valid_search_stats = torch.zeros(gen_batch.batch['input_ids'].shape[0], dtype=torch.int)
active_num_list = [active_mask.sum().item()]
rollings = gen_batch
# Main generation loop
for step in range(self.config.max_turns):
if not active_mask.sum():
break
rollings.batch = self.tensor_fn.cut_to_effective_len(
rollings.batch,
keys=['input_ids', 'attention_mask', 'position_ids']
)
# gen_output = self.actor_rollout_wg.generate_sequences(rollings)
rollings_active = DataProto.from_dict({
k: v[active_mask] for k, v in rollings.batch.items()
})
gen_output = self._generate_with_gpu_padding(rollings_active)
meta_info = gen_output.meta_info
responses_ids, responses_str = self._postprocess_responses(gen_output.batch['responses'])
responses_ids, responses_str = self.tensor_fn._example_level_pad(responses_ids, responses_str, active_mask)
# Execute in environment and process observations
next_obs, dones, valid_action, is_search = self.execute_predictions(
responses_str, self.tokenizer.pad_token, active_mask
)
curr_active_mask = torch.tensor([not done for done in dones], dtype=torch.bool)
active_mask = active_mask * curr_active_mask
active_num_list.append(active_mask.sum().item())
turns_stats[curr_active_mask] += 1
valid_action_stats += torch.tensor(valid_action, dtype=torch.int)
valid_search_stats += torch.tensor(is_search, dtype=torch.int)
next_obs_ids = self._process_next_obs(next_obs)
# Update states
rollings = self._update_rolling_state(
rollings,
responses_ids,
next_obs_ids
)
original_right_side = self._update_right_side(
original_right_side,
responses_ids,
next_obs_ids
)
# final LLM rollout
if active_mask.sum():
rollings.batch = self.tensor_fn.cut_to_effective_len(
rollings.batch,
keys=['input_ids', 'attention_mask', 'position_ids']
)
# gen_output = self.actor_rollout_wg.generate_sequences(rollings)
rollings_active = DataProto.from_dict({
k: v[active_mask] for k, v in rollings.batch.items()
})
gen_output = self._generate_with_gpu_padding(rollings_active)
meta_info = gen_output.meta_info
responses_ids, responses_str = self._postprocess_responses(gen_output.batch['responses'])
responses_ids, responses_str = self.tensor_fn._example_level_pad(responses_ids, responses_str, active_mask)
# # Execute in environment and process observations
_, dones, valid_action, is_search = self.execute_predictions(
responses_str, self.tokenizer.pad_token, active_mask, do_search=False
)
curr_active_mask = torch.tensor([not done for done in dones], dtype=torch.bool)
active_mask = active_mask * curr_active_mask
active_num_list.append(active_mask.sum().item())
valid_action_stats += torch.tensor(valid_action, dtype=torch.int)
valid_search_stats += torch.tensor(is_search, dtype=torch.int)
meta_info['turns_stats'] = turns_stats.tolist()
meta_info['active_mask'] = active_mask.tolist()
meta_info['valid_action_stats'] = valid_action_stats.tolist()
meta_info['valid_search_stats'] = valid_search_stats.tolist()
original_right_side = self._update_right_side(
original_right_side,
responses_ids,
)
print("ACTIVE_TRAJ_NUM:", active_num_list)
return self._compose_final_output(original_left_side, original_right_side, meta_info)
def _compose_final_output(self, left_side: Dict,
right_side: Dict,
meta_info: Dict) -> Tuple[Dict, Dict]:
"""Compose final generation output."""
final_output = right_side.copy()
final_output['prompts'] = left_side['input_ids']
# Combine input IDs
final_output['input_ids'] = torch.cat([
left_side['input_ids'],
right_side['responses']
], dim=1)
# Create attention mask and position ids
final_output['attention_mask'] = torch.cat([
self.tensor_fn.create_attention_mask(left_side['input_ids']),
self.tensor_fn.create_attention_mask(final_output['responses'])
], dim=1)
final_output['info_mask'] = torch.cat([
self.tensor_fn.create_attention_mask(left_side['input_ids']),
self.tensor_fn.create_attention_mask(final_output['responses_with_info_mask'])
], dim=1)
final_output['position_ids'] = self.tensor_fn.create_position_ids(
final_output['attention_mask']
)
final_output = DataProto.from_dict(final_output)
final_output.meta_info.update(meta_info)
return final_output
def execute_predictions(self, predictions: List[str], pad_token: str, active_mask=None, do_search=True) -> List[str]:
"""
Execute predictions across multiple environments.
NOTE: the function is the actual `step` function in the environment
NOTE penalty_for_invalid is not included in observation shown to the LLM
Args:
envs: List of environment instances
predictions: List of action predictions
pad_token: Token to use for padding
Returns:
List of observation strings
"""
cur_actions, contents = self.postprocess_predictions(predictions)
next_obs, dones, valid_action, is_search = [], [], [], []
search_queries = [content for action, content in zip(cur_actions, contents) if action == 'search']
if do_search:
search_results = self.batch_search(search_queries)
assert len(search_results) == sum([1 for action in cur_actions if action == 'search'])
else:
search_results = [''] * sum([1 for action in cur_actions if action == 'search'])
for i, (action, active) in enumerate(zip(cur_actions, active_mask)):
if not active:
next_obs.append('')
dones.append(1)
valid_action.append(0)
is_search.append(0)
else:
if action == 'answer':
next_obs.append('')
dones.append(1)
valid_action.append(1)
is_search.append(0)
elif action == 'search':
next_obs.append(f'\n\n<information>{search_results.pop(0).strip()}</information>\n\n')
dones.append(0)
valid_action.append(1)
is_search.append(1)
else:
next_obs.append(f'\nMy previous action is invalid. \
If I want to search, I should put the query between <search> and </search>. \
If I want to give the final answer, I should put the answer between <answer> and </answer>. Let me try again.\n')
dones.append(0)
valid_action.append(0)
is_search.append(0)
assert len(search_results) == 0
return next_obs, dones, valid_action, is_search
def postprocess_predictions(self, predictions: List[Any]) -> Tuple[List[int], List[bool]]:
"""
Process (text-based) predictions from llm into actions and validity flags.
Args:
predictions: List of raw predictions
Returns:
Tuple of (actions list, validity flags list)
"""
actions = []
contents = []
for prediction in predictions:
if isinstance(prediction, str): # for llm output
pattern = r'<(search|answer)>(.*?)</\1>'
match = re.search(pattern, prediction, re.DOTALL)
if match:
content = match.group(2).strip() # Return only the content inside the tags
action = match.group(1)
else:
content = ''
action = None
else:
raise ValueError(f"Invalid prediction type: {type(prediction)}")
actions.append(action)
contents.append(content)
return actions, contents
def batch_search(self, queries: List[str] = None) -> str:
"""
Batchified search for queries.
Args:
queries: queries to call the search engine
Returns:
search results which is concatenated into a string
"""
results = self._batch_search(queries)['result']
return [self._passages2string(result) for result in results]
def _batch_search(self, queries):
payload = {
"queries": queries,
"topk": self.config.topk,
"return_scores": True
}
return requests.post(self.config.search_url, json=payload).json()
def _passages2string(self, retrieval_result):
format_reference = ''
for idx, doc_item in enumerate(retrieval_result):
content = doc_item['document']['contents']
title = content.split("\n")[0]
text = "\n".join(content.split("\n")[1:])
format_reference += f"Doc {idx+1}(Title: {title}) {text}\n"
return format_reference