Files
Search-R1/search_r1/llm_agent/generation.py
xiaobo-yang 32719b5119 Fix bugs related to loss mask, meta info, and response length
1. Construct the loss mask immediately after obtaining the observation to prevent encoding misalignment when converting back to tokens after text transformation.
2. Follow up on meta info to ensure that the test batch can apply do sample.
3. Remove the recording of info information for response length.
2025-03-14 14:25:40 +08:00

452 lines
18 KiB
Python

import torch
import re
from collections import defaultdict
import os
from typing import List, Dict, Any, Tuple
from dataclasses import dataclass
from .tensor_helper import TensorHelper, TensorConfig
# from search_r1.utils import set_seed
# from search_r1.utils.plot import (
# save_trajectory_to_output,
# parse_llm_output
# )
from verl import DataProto
from verl.utils.tracking import Tracking
import shutil
import requests
@dataclass
class GenerationConfig:
max_turns: int
max_start_length: int
max_prompt_length: int
max_response_length: int
max_obs_length: int
# logging: dict
num_gpus: int
no_think_rl: bool=False
search_url: str = None
topk: int = 3
class LLMGenerationManager:
def __init__(
self,
tokenizer,
actor_rollout_wg,
config: GenerationConfig,
# logger: Tracking,
is_validation: bool = False,
):
self.tokenizer = tokenizer
self.actor_rollout_wg = actor_rollout_wg
self.config = config
# self.logger = logger
self.is_validation = is_validation
self.tensor_fn = TensorHelper(TensorConfig(
pad_token_id=tokenizer.pad_token_id,
max_prompt_length=config.max_prompt_length,
max_obs_length=config.max_obs_length,
max_start_length=config.max_start_length
))
def _batch_tokenize(self, responses: List[str]) -> torch.Tensor:
"""Tokenize a batch of responses."""
return self.tokenizer(
responses,
add_special_tokens=False,
return_tensors='pt',
padding="longest"
)['input_ids']
def _postprocess_responses(self, responses: torch.Tensor) -> torch.Tensor:
"""Process responses to stop at search operation or answer operation."""
responses_str = self.tokenizer.batch_decode(
responses,
skip_special_tokens=True
)
responses_str = [resp.split('</search>')[0] + '</search>'
if '</search>' in resp
else resp.split('</answer>')[0] + '</answer>'
if '</answer>' in resp
else resp
for resp in responses_str]
if self.config.no_think_rl:
raise ValueError('stop')
# if no_think_rl is enabled, only keep action in the str
actions, _ = self.env.postprocess_predictions(responses_str)
responses_str=[f"<answer>{envs[idx].ACTION_LOOKUP[action]}</answer>" for idx, action in enumerate(actions)]
print("RESPONSES:", responses_str)
responses = self._batch_tokenize(responses_str)
return responses, responses_str
def _process_next_obs(self, next_obs: List[str]) -> torch.Tensor:
"""Process next observations from environment."""
next_obs_ids = self.tokenizer(
next_obs,
padding='longest',
return_tensors='pt',
add_special_tokens=False, # Prevents adding special tokens
)['input_ids']
if next_obs_ids.shape[1] > self.config.max_obs_length:
print(f"[WARNING] OBSERVATION TOO LONG, CONSIDER CHANGING YOUR CONFIG, {next_obs_ids.shape[1]} & {self.config.max_obs_length}")
next_obs_ids = next_obs_ids[:, :self.config.max_obs_length]
return next_obs_ids
def _update_rolling_state(self, rollings: DataProto, cur_responses: torch.Tensor,
next_obs_ids: torch.Tensor) -> Dict:
"""Update rolling state with new responses and observations."""
# Concatenate and handle padding
new_input_ids = self.tensor_fn.concatenate_with_padding([
rollings.batch['input_ids'],
cur_responses,
next_obs_ids
])
# Create attention mask and position ids
new_attention_mask = self.tensor_fn.create_attention_mask(new_input_ids)
new_position_ids = self.tensor_fn.create_position_ids(new_attention_mask)
# Cut to appropriate length
effective_len = new_attention_mask.sum(dim=1).max()
max_len = min(self.config.max_prompt_length, effective_len)
new_rollings = DataProto.from_dict({
'input_ids': new_input_ids[:, -max_len:],
'position_ids': new_position_ids[:, -max_len:],
'attention_mask': new_attention_mask[:, -max_len:]
})
new_rollings.meta_info.update(rollings.meta_info)
return new_rollings
def _info_masked_concatenate_with_padding(self,
prompt: torch.Tensor,
prompt_with_mask: torch.Tensor,
response: torch.Tensor,
info: torch.Tensor = None,
pad_to_left: bool = True
) -> torch.Tensor:
"""Concatenate tensors and handle padding. Additionally, create a mask (info_mask) to cover the information block if it exists."""
pad_id = self.tokenizer.pad_token_id
tensors = [prompt, response]
tensors_with_mask = [prompt_with_mask, response]
if info is not None:
tensors.append(info)
info_mask = torch.full(info.size(), pad_id, dtype=info.dtype, device=info.device) # information mask
tensors_with_mask.append(info_mask)
concatenated = torch.cat(tensors, dim=1)
concatenated_with_info = torch.cat(tensors_with_mask, dim=1)
mask = concatenated != pad_id if pad_to_left else concatenated == pad_id
sorted_indices = mask.to(torch.int64).argsort(dim=1, stable=True)
padded_tensor = concatenated.gather(1, sorted_indices)
padded_tensor_with_info = concatenated_with_info.gather(1, sorted_indices)
return padded_tensor, padded_tensor_with_info
def _update_right_side(self, right_side: Dict,
cur_responses: torch.Tensor,
next_obs_ids: torch.Tensor = None) -> Dict:
"""Update right side state."""
if next_obs_ids != None:
responses, responses_with_info_mask = self._info_masked_concatenate_with_padding(
right_side['responses'],
right_side['responses_with_info_mask'],
cur_responses,
next_obs_ids,
pad_to_left=False
)
else:
responses, responses_with_info_mask = self._info_masked_concatenate_with_padding(
right_side['responses'],
right_side['responses_with_info_mask'],
cur_responses,
pad_to_left=False
)
effective_len = self.tensor_fn.create_attention_mask(responses).sum(dim=1).max()
max_len = min(self.config.max_prompt_length, effective_len)
return {'responses': responses[:, :max_len], 'responses_with_info_mask': responses_with_info_mask[:, :max_len]}
def _generate_with_gpu_padding(self, active_batch: DataProto) -> DataProto:
"""
Wrapper for generation that handles multi-GPU padding requirements.
if num_gpus <= 1, return self.actor_rollout_wg.generate_sequences(active_batch)
if active_batch size is not divisible by num_gpus, pad with first sequence
then remove padding from output
"""
num_gpus = self.config.num_gpus
if num_gpus <= 1:
return self.actor_rollout_wg.generate_sequences(active_batch)
batch_size = active_batch.batch['input_ids'].shape[0]
remainder = batch_size % num_gpus
if remainder == 0:
return self.actor_rollout_wg.generate_sequences(active_batch)
# Add padding sequences
padding_size = num_gpus - remainder
padded_batch = {}
for k, v in active_batch.batch.items():
# Use first sequence as padding template
pad_sequence = v[0:1].repeat(padding_size, *[1] * (len(v.shape) - 1))
padded_batch[k] = torch.cat([v, pad_sequence], dim=0)
padded_active_batch = DataProto.from_dict(padded_batch)
# Generate with padded batch
padded_output = self.actor_rollout_wg.generate_sequences(padded_active_batch)
# Remove padding from output
trimmed_batch = {k: v[:-padding_size] for k, v in padded_output.batch.items()}
# Handle meta_info if present
if hasattr(padded_output, 'meta_info') and padded_output.meta_info:
trimmed_meta = {}
for k, v in padded_output.meta_info.items():
if isinstance(v, torch.Tensor):
trimmed_meta[k] = v[:-padding_size]
else:
trimmed_meta[k] = v
padded_output.meta_info = trimmed_meta
padded_output.batch = trimmed_batch
return padded_output
def run_llm_loop(self, gen_batch, initial_input_ids: torch.Tensor) -> Tuple[Dict, Dict]:
"""Run main LLM generation loop."""
original_left_side = {'input_ids': initial_input_ids[:, -self.config.max_start_length:]}
original_right_side = {'responses': initial_input_ids[:, []], 'responses_with_info_mask': initial_input_ids[:, []]}
active_mask = torch.ones(gen_batch.batch['input_ids'].shape[0], dtype=torch.bool)
active_num_list = [active_mask.sum().item()]
rollings = gen_batch
# Main generation loop
for step in range(self.config.max_turns):
if not active_mask.sum():
break
rollings.batch = self.tensor_fn.cut_to_effective_len(
rollings.batch,
keys=['input_ids', 'attention_mask', 'position_ids']
)
# gen_output = self.actor_rollout_wg.generate_sequences(rollings)
rollings_active = DataProto.from_dict({
k: v[active_mask] for k, v in rollings.batch.items()
})
gen_output = self._generate_with_gpu_padding(rollings_active)
meta_info = gen_output.meta_info
responses_ids, responses_str = self._postprocess_responses(gen_output.batch['responses'])
responses_ids, responses_str = self.tensor_fn._example_level_pad(responses_ids, responses_str, active_mask)
# Execute in environment and process observations
next_obs, dones = self.execute_predictions(
responses_str, self.tokenizer.pad_token, active_mask
)
curr_active_mask = torch.tensor([not done for done in dones], dtype=torch.bool)
active_mask = active_mask * curr_active_mask
active_num_list.append(active_mask.sum().item())
next_obs_ids = self._process_next_obs(next_obs)
# Update states
rollings = self._update_rolling_state(
rollings,
responses_ids,
next_obs_ids
)
original_right_side = self._update_right_side(
original_right_side,
responses_ids,
next_obs_ids
)
# final LLM rollout
if active_mask.sum():
rollings.batch = self.tensor_fn.cut_to_effective_len(
rollings.batch,
keys=['input_ids', 'attention_mask', 'position_ids']
)
# gen_output = self.actor_rollout_wg.generate_sequences(rollings)
rollings_active = DataProto.from_dict({
k: v[active_mask] for k, v in rollings.batch.items()
})
gen_output = self._generate_with_gpu_padding(rollings_active)
meta_info = gen_output.meta_info
responses_ids, responses_str = self._postprocess_responses(gen_output.batch['responses'])
responses_ids, responses_str = self.tensor_fn._example_level_pad(responses_ids, responses_str, active_mask)
# # Execute in environment and process observations
_, dones = self.execute_predictions(
responses_str, self.tokenizer.pad_token, active_mask, do_search=False
)
curr_active_mask = torch.tensor([not done for done in dones], dtype=torch.bool)
active_mask = active_mask * curr_active_mask
active_num_list.append(active_mask.sum().item())
original_right_side = self._update_right_side(
original_right_side,
responses_ids,
)
print("ACTIVE_TRAJ_NUM:", active_num_list)
return self._compose_final_output(original_left_side, original_right_side, meta_info)
def _compose_final_output(self, left_side: Dict,
right_side: Dict,
meta_info: Dict) -> Tuple[Dict, Dict]:
"""Compose final generation output."""
final_output = right_side.copy()
final_output['prompts'] = left_side['input_ids']
# Combine input IDs
final_output['input_ids'] = torch.cat([
left_side['input_ids'],
right_side['responses']
], dim=1)
# Create attention mask and position ids
final_output['attention_mask'] = torch.cat([
self.tensor_fn.create_attention_mask(left_side['input_ids']),
self.tensor_fn.create_attention_mask(final_output['responses'])
], dim=1)
final_output['info_mask'] = torch.cat([
self.tensor_fn.create_attention_mask(left_side['input_ids']),
self.tensor_fn.create_attention_mask(final_output['responses_with_info_mask'])
], dim=1)
final_output['position_ids'] = self.tensor_fn.create_position_ids(
final_output['attention_mask']
)
final_output = DataProto.from_dict(final_output)
final_output.meta_info.update(meta_info)
return final_output
def execute_predictions(self, predictions: List[str], pad_token: str, active_mask=None, do_search=True) -> List[str]:
"""
Execute predictions across multiple environments.
NOTE: the function is the actual `step` function in the environment
NOTE penalty_for_invalid is not included in observation shown to the LLM
Args:
envs: List of environment instances
predictions: List of action predictions
pad_token: Token to use for padding
Returns:
List of observation strings
"""
cur_actions, contents = self.postprocess_predictions(predictions)
next_obs, dones = [], []
search_queries = [content for action, content in zip(cur_actions, contents) if action == 'search']
if do_search:
search_results = self.batch_search(search_queries)
assert len(search_results) == sum([1 for action in cur_actions if action == 'search'])
else:
search_results = [''] * sum([1 for action in cur_actions if action == 'search'])
for i, (action, active) in enumerate(zip(cur_actions, active_mask)):
if not active:
next_obs.append('')
dones.append(1)
else:
if action == 'answer':
next_obs.append('')
dones.append(1)
elif action == 'search':
next_obs.append(f'\n\n<information>{search_results.pop(0).strip()}</information>\n\n')
dones.append(0)
else:
next_obs.append(f'\nMy previous action is invalid. \
If I want to search, I should put the query between <search> and </search>. \
If I want to give the final answer, I should put the answer between <answer> and </answer>. Let me try again.\n')
dones.append(0)
assert len(search_results) == 0
return next_obs, dones
def postprocess_predictions(self, predictions: List[Any]) -> Tuple[List[int], List[bool]]:
"""
Process (text-based) predictions from llm into actions and validity flags.
Args:
predictions: List of raw predictions
Returns:
Tuple of (actions list, validity flags list)
"""
actions = []
contents = []
for prediction in predictions:
if isinstance(prediction, str): # for llm output
pattern = r'<(search|answer)>(.*?)</\1>'
match = re.search(pattern, prediction, re.DOTALL)
if match:
content = match.group(2).strip() # Return only the content inside the tags
action = match.group(1)
else:
content = ''
action = None
else:
raise ValueError(f"Invalid prediction type: {type(prediction)}")
actions.append(action)
contents.append(content)
return actions, contents
def batch_search(self, queries: List[str] = None) -> str:
"""
Batchified search for queries.
Args:
queries: queries to call the search engine
Returns:
search results which is concatenated into a string
"""
results = self._batch_search(queries)['result']
return [self._passages2string(result) for result in results]
def _batch_search(self, queries):
payload = {
"queries": queries,
"topk": self.config.topk,
"return_scores": True
}
return requests.post(self.config.search_url, json=payload).json()
def _passages2string(self, retrieval_result):
format_reference = ''
for idx, doc_item in enumerate(retrieval_result):
content = doc_item['document']['contents']
title = content.split("\n")[0]
text = "\n".join(content.split("\n")[1:])
format_reference += f"Doc {idx+1}(Title: {title}) {text}\n"
return format_reference