Files
Search-R1/verl/workers/critic/dp_critic.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

205 lines
9.6 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Implement a multiprocess PPOCritic
"""
import itertools
from typing import Iterable
import torch
import torch.distributed
from torch import nn, optim
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from verl import DataProto
from verl.trainer.ppo import core_algos
from verl.workers.critic import BasePPOCritic
from verl.utils.py_functional import append_to_dict
from verl.utils.torch_functional import masked_mean
from verl.utils.ulysses import ulysses_pad_and_slice_inputs, gather_outpus_and_unpad
from verl.utils.seqlen_balancing import rearrange_micro_batches, get_reverse_idx
from flash_attn.bert_padding import pad_input, unpad_input, rearrange, index_first_axis
__all__ = ['DataParallelPPOCritic']
class DataParallelPPOCritic(BasePPOCritic):
def __init__(self, config, critic_module: nn.Module, critic_optimizer: optim.Optimizer):
super().__init__(config=config)
self.critic_module = critic_module
self.critic_optimizer = critic_optimizer
self.use_remove_padding = self.config.model.get('use_remove_padding', False)
print(f'Critic use_remove_padding={self.use_remove_padding}')
assert self.config.ppo_mini_batch_size % self.config.ppo_micro_batch_size == 0
self.gradient_accumulation = self.config.ppo_mini_batch_size // self.config.ppo_micro_batch_size
self.ulysses_sequence_parallel_size = self.config.get('ulysses_sequence_parallel_size', 1)
def _forward_micro_batch(self, micro_batch):
response_length = micro_batch['responses'].size(-1)
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
input_ids = micro_batch['input_ids']
batch, seqlen = input_ids.shape
attention_mask = micro_batch['attention_mask']
position_ids = micro_batch['position_ids']
if self.use_remove_padding:
input_ids_rmpad, indices, *_ = unpad_input(input_ids.unsqueeze(-1),
attention_mask) # input_ids_rmpad (total_nnz, ...)
input_ids_rmpad = input_ids_rmpad.transpose(0, 1) # (1, total_nnz)
# unpad the position_ids to align the rotary
position_ids_rmpad = index_first_axis(rearrange(position_ids.unsqueeze(-1), "b s ... -> (b s) ..."),
indices).transpose(0, 1)
# pad and slice the inputs if sp > 1
if self.ulysses_sequence_parallel_size > 1:
input_ids_rmpad, position_ids_rmpad, pad_size = ulysses_pad_and_slice_inputs(input_ids_rmpad, \
position_ids_rmpad, \
sp_size=self.ulysses_sequence_parallel_size)
# only pass input_ids and position_ids to enable flash_attn_varlen
output = self.critic_module(input_ids=input_ids_rmpad,
attention_mask=None,
position_ids=position_ids_rmpad,
use_cache=False) # prevent model thinks we are generating
values_rmpad = output.logits
values_rmpad = values_rmpad.squeeze(0) # (total_nnz)
# gather output if sp > 1
if self.ulysses_sequence_parallel_size > 1:
values_rmpad = gather_outpus_and_unpad(values_rmpad,
gather_dim=0,
unpad_dim=0,
padding_size=pad_size)
# pad it back
values = pad_input(values_rmpad, indices=indices, batch=batch, seqlen=seqlen).squeeze(-1)
values = values[:, -response_length - 1:-1]
else:
output = self.critic_module(input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
use_cache=False) # prevent model thinks we are generating
values = output.logits
values = values[:, -response_length - 1:-1].squeeze(-1)
return values
def _optimizer_step(self):
assert self.config.grad_clip is not None
if isinstance(self.critic_module, FSDP):
grad_norm = self.critic_module.clip_grad_norm_(self.config.grad_clip)
else:
grad_norm = torch.nn.utils.clip_grad_norm_(self.critic_module.parameters(), max_norm=self.config.grad_clip)
self.critic_optimizer.step()
return grad_norm
def compute_values(self, data: DataProto) -> torch.Tensor:
self.critic_module.eval()
micro_batch_size = data.meta_info['micro_batch_size']
select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids']
batch = data.select(batch_keys=select_keys).batch
use_dynamic_bsz = data.meta_info['use_dynamic_bsz']
if use_dynamic_bsz:
# split using dynamic bsz
max_token_len = data.meta_info['max_token_len'] * self.ulysses_sequence_parallel_size
micro_batches, indices = rearrange_micro_batches(batch=batch, max_token_len=max_token_len)
else:
micro_batches = batch.split(micro_batch_size)
values_lst = []
for micro_batch in micro_batches:
with torch.no_grad():
values = self._forward_micro_batch(micro_batch)
values_lst.append(values)
values = torch.concat(values_lst, dim=0)
responses = data.batch['responses']
attention_mask = data.batch['attention_mask']
response_length = responses.size(1)
values = values * attention_mask[:, -response_length - 1:-1]
if use_dynamic_bsz:
indices = list(itertools.chain.from_iterable(indices))
assert len(indices) == values.size(0), f"{len(indices)} vs. {values.size()}"
revert_indices = torch.tensor(get_reverse_idx(indices), dtype=torch.long)
values = values[revert_indices]
return values
def update_critic(self, data: DataProto):
# make sure we are in training mode
self.critic_module.train()
metrics = {}
select_keys = ['input_ids', 'responses', 'attention_mask', 'position_ids', 'values', 'returns']
batch = data.select(batch_keys=select_keys).batch
# Split to make minibatch iterator for updating the actor
# See PPO paper for details. https://arxiv.org/abs/1707.06347
dataloader = batch.split(self.config.ppo_mini_batch_size)
for batch_idx, data in enumerate(dataloader):
# split batch into micro_batches
mini_batch = data
if self.config.use_dynamic_bsz:
max_token_len = self.config.ppo_max_token_len_per_gpu * self.ulysses_sequence_parallel_size
micro_batches, _ = rearrange_micro_batches(batch=mini_batch, max_token_len=max_token_len)
else:
micro_batches = mini_batch.split(self.config.ppo_micro_batch_size)
self.critic_optimizer.zero_grad()
for data in micro_batches:
data = data.cuda() # critic device is cpu when using offload
input_ids = data['input_ids']
responses = data['responses']
attention_mask = data['attention_mask']
position_ids = data['position_ids']
values = data['values']
returns = data['returns']
response_length = responses.size(1)
eos_mask = attention_mask[:, -response_length - 1:-1]
vpreds = self._forward_micro_batch(data)
# assert not torch.any(torch.isnan(vpreds)).item()
vf_loss, vf_clipfrac = core_algos.compute_value_loss(vpreds=vpreds,
values=values,
returns=returns,
eos_mask=eos_mask,
cliprange_value=self.config.cliprange_value)
loss = vf_loss / self.gradient_accumulation
loss.backward()
data = {
'critic/vf_loss': vf_loss.detach().item(),
'critic/vf_clipfrac': vf_clipfrac.detach().item(),
'critic/vpred_mean': masked_mean(vpreds, eos_mask).detach().item(),
}
append_to_dict(metrics, data)
grad_norm = self._optimizer_step()
data = {'critic/grad_norm': grad_norm.detach().item()}
append_to_dict(metrics, data)
self.critic_optimizer.zero_grad()
return metrics