Files
Search-R1/verl/trainer/ppo/ray_trainer.py
2025-04-10 12:26:43 +00:00

868 lines
41 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
FSDP PPO Trainer with Ray-based single controller.
This trainer supports model-agonistic model initialization with huggingface
"""
import os
import uuid
from contextlib import contextmanager
from dataclasses import dataclass, field
from enum import Enum
from pprint import pprint
from typing import Type, Dict
import re
import json
from collections import defaultdict
import numpy as np
from codetiming import Timer
from omegaconf import OmegaConf, open_dict
from verl import DataProto
from verl.protocol import pad_dataproto_to_divisor, unpad_dataproto
from verl.single_controller.base import Worker
from verl.single_controller.ray import RayResourcePool, RayWorkerGroup, RayClassWithInitArgs
from verl.single_controller.ray.base import create_colocated_worker_cls
from verl.trainer.ppo import core_algos
from verl.utils.seqlen_balancing import get_seqlen_balanced_partitions, log_seqlen_unbalance
import re
from search_r1.llm_agent.generation import LLMGenerationManager, GenerationConfig
WorkerType = Type[Worker]
class Role(Enum):
"""
To create more roles dynamically, you can subclass Role and add new members
"""
Actor = 0
Rollout = 1
ActorRollout = 2
Critic = 3
RefPolicy = 4
RewardModel = 5
ActorRolloutRef = 6
@dataclass
class ResourcePoolManager:
"""
Define a resource pool specification. Resource pool will be initialized first.
Mapping
"""
resource_pool_spec: dict[str, list[int]]
mapping: dict[Role, str]
resource_pool_dict: dict[str, RayResourcePool] = field(default_factory=dict)
def create_resource_pool(self):
for resource_pool_name, process_on_nodes in self.resource_pool_spec.items():
# max_colocate_count means the number of WorkerGroups (i.e. processes) in each RayResourcePool
# For FSDP backend, we recommend using max_colocate_count=1 that merge all WorkerGroups into one.
# For Megatron backend, we recommend using max_colocate_count>1 that can utilize different WorkerGroup for differnt models
resource_pool = RayResourcePool(process_on_nodes=process_on_nodes,
use_gpu=True,
max_colocate_count=1,
name_prefix=resource_pool_name)
self.resource_pool_dict[resource_pool_name] = resource_pool
def get_resource_pool(self, role: Role) -> RayResourcePool:
"""Get the resource pool of the worker_cls"""
return self.resource_pool_dict[self.mapping[role]]
import torch
from verl.utils.torch_functional import masked_mean
def apply_kl_penalty(data: DataProto, kl_ctrl: core_algos.AdaptiveKLController, kl_penalty='kl'):
responses = data.batch['responses']
response_length = responses.size(1)
token_level_scores = data.batch['token_level_scores']
batch_size = data.batch.batch_size[0]
attention_mask = data.batch['info_mask'] if 'info_mask' in data.batch else data.batch['attention_mask']
response_mask = attention_mask[:, -response_length:]
# compute kl between ref_policy and current policy
if 'ref_log_prob' in data.batch.keys():
kld = core_algos.kl_penalty(data.batch['old_log_probs'], data.batch['ref_log_prob'],
kl_penalty=kl_penalty) # (batch_size, response_length)
kld = kld * response_mask
beta = kl_ctrl.value
else:
beta = 0
kld = torch.zeros_like(response_mask, dtype=torch.float32)
token_level_rewards = token_level_scores - beta * kld
current_kl = masked_mean(kld, mask=response_mask, axis=-1) # average over sequence
current_kl = torch.mean(current_kl, dim=0).item()
# according to https://github.com/huggingface/trl/blob/951ca1841f29114b969b57b26c7d3e80a39f75a0/trl/trainer/ppo_trainer.py#L837
kl_ctrl.update(current_kl=current_kl, n_steps=batch_size)
data.batch['token_level_rewards'] = token_level_rewards
metrics = {'critic/kl': current_kl, 'critic/kl_coeff': beta}
return data, metrics
def compute_advantage(data: DataProto, adv_estimator, gamma=1.0, lam=1.0, num_repeat=1):
# prepare response group
# TODO: add other ways to estimate advantages
if adv_estimator == 'gae':
values = data.batch['values']
responses = data.batch['responses']
response_length = responses.size(-1)
attention_mask = data.batch['attention_mask']
response_mask = attention_mask[:, -response_length:]
token_level_rewards = data.batch['token_level_rewards']
advantages, returns = core_algos.compute_gae_advantage_return(token_level_rewards=token_level_rewards,
values=values,
eos_mask=response_mask,
gamma=gamma,
lam=lam)
data.batch['advantages'] = advantages
data.batch['returns'] = returns
elif adv_estimator == 'grpo':
token_level_rewards = data.batch['token_level_rewards']
index = data.non_tensor_batch['uid']
responses = data.batch['responses']
response_length = responses.size(-1)
attention_mask = data.batch['attention_mask']
response_mask = attention_mask[:, -response_length:]
advantages, returns = core_algos.compute_grpo_outcome_advantage(token_level_rewards=token_level_rewards,
eos_mask=response_mask,
index=index)
data.batch['advantages'] = advantages
data.batch['returns'] = returns
else:
raise NotImplementedError
return data
def reduce_metrics(metrics: dict):
for key, val in metrics.items():
metrics[key] = np.mean(val)
return metrics
def _compute_response_info(batch):
response_length = batch.batch['responses'].shape[-1]
prompt_mask = batch.batch['attention_mask'][:, :-response_length]
response_mask = batch.batch['attention_mask'][:, -response_length:]
prompt_length = prompt_mask.sum(-1).float()
response_length = response_mask.sum(-1).float() # (batch_size,)
return dict(
response_mask=response_mask,
prompt_length=prompt_length,
response_length=response_length,
)
def compute_data_metrics(batch, use_critic=True):
# TODO: add response length
sequence_score = batch.batch['token_level_scores'].sum(-1)
sequence_reward = batch.batch['token_level_rewards'].sum(-1)
advantages = batch.batch['advantages']
returns = batch.batch['returns']
max_response_length = batch.batch['responses'].shape[-1]
prompt_mask = batch.batch['attention_mask'][:, :-max_response_length].bool()
response_mask = batch.batch['attention_mask'][:, -max_response_length:].bool()
max_prompt_length = prompt_mask.size(-1)
response_info = _compute_response_info(batch)
prompt_length = response_info['prompt_length']
response_length = response_info['response_length']
valid_adv = torch.masked_select(advantages, response_mask)
valid_returns = torch.masked_select(returns, response_mask)
if use_critic:
values = batch.batch['values']
valid_values = torch.masked_select(values, response_mask)
return_diff_var = torch.var(valid_returns - valid_values)
return_var = torch.var(valid_returns)
metrics = {
# score
'critic/score/mean':
torch.mean(sequence_score).detach().item(),
'critic/score/max':
torch.max(sequence_score).detach().item(),
'critic/score/min':
torch.min(sequence_score).detach().item(),
# reward
'critic/rewards/mean':
torch.mean(sequence_reward).detach().item(),
'critic/rewards/max':
torch.max(sequence_reward).detach().item(),
'critic/rewards/min':
torch.min(sequence_reward).detach().item(),
# adv
'critic/advantages/mean':
torch.mean(valid_adv).detach().item(),
'critic/advantages/max':
torch.max(valid_adv).detach().item(),
'critic/advantages/min':
torch.min(valid_adv).detach().item(),
# returns
'critic/returns/mean':
torch.mean(valid_returns).detach().item(),
'critic/returns/max':
torch.max(valid_returns).detach().item(),
'critic/returns/min':
torch.min(valid_returns).detach().item(),
**({
# values
'critic/values/mean': torch.mean(valid_values).detach().item(),
'critic/values/max': torch.max(valid_values).detach().item(),
'critic/values/min': torch.min(valid_values).detach().item(),
# vf explained var
'critic/vf_explained_var': (1.0 - return_diff_var / (return_var + 1e-5)).detach().item(),
} if use_critic else {}),
# response length
'response_length/mean':
torch.mean(response_length).detach().item(),
'response_length/max':
torch.max(response_length).detach().item(),
'response_length/min':
torch.min(response_length).detach().item(),
'response_length/clip_ratio':
torch.mean(torch.eq(response_length, max_response_length).float()).detach().item(),
# prompt length
'prompt_length/mean':
torch.mean(prompt_length).detach().item(),
'prompt_length/max':
torch.max(prompt_length).detach().item(),
'prompt_length/min':
torch.min(prompt_length).detach().item(),
'prompt_length/clip_ratio':
torch.mean(torch.eq(prompt_length, max_prompt_length).float()).detach().item(),
}
# metrics for actions
if 'turns_stats' in batch.meta_info:
metrics['env/number_of_actions/mean'] = float(np.array(batch.meta_info['turns_stats'], dtype=np.int16).mean())
metrics['env/number_of_actions/max'] = float(np.array(batch.meta_info['turns_stats'], dtype=np.int16).max())
metrics['env/number_of_actions/min'] = float(np.array(batch.meta_info['turns_stats'], dtype=np.int16).min())
if 'active_mask' in batch.meta_info:
metrics['env/finish_ratio'] = 1 - float(np.array(batch.meta_info['active_mask'], dtype=np.int16).mean())
if 'valid_action_stats' in batch.meta_info:
metrics['env/number_of_valid_action'] = float(np.array(batch.meta_info['valid_action_stats'], dtype=np.int16).mean())
metrics['env/ratio_of_valid_action'] = float((np.array(batch.meta_info['valid_action_stats'], dtype=np.int16) / np.array(batch.meta_info['turns_stats'], dtype=np.int16)).mean())
if 'valid_search_stats' in batch.meta_info:
metrics['env/number_of_valid_search'] = float(np.array(batch.meta_info['valid_search_stats'], dtype=np.int16).mean())
return metrics
def compute_timing_metrics(batch, timing_raw):
response_info = _compute_response_info(batch)
num_prompt_tokens = torch.sum(response_info['prompt_length']).item()
num_response_tokens = torch.sum(response_info['response_length']).item()
num_overall_tokens = num_prompt_tokens + num_response_tokens
num_tokens_of_section = {
'gen': num_response_tokens,
**{
name: num_overall_tokens for name in ['ref', 'values', 'adv', 'update_critic', 'update_actor', 'rollout']
},
}
return {
**{
f'timing_s/{name}': value for name, value in timing_raw.items()
},
**{
f'timing_per_token_ms/{name}': timing_raw[name] * 1000 / num_tokens_of_section[name] for name in set(num_tokens_of_section.keys(
)) & set(timing_raw.keys())
},
}
@contextmanager
def _timer(name: str, timing_raw: Dict[str, float]):
with Timer(name=name, logger=None) as timer:
yield
timing_raw[name] = timer.last
class RayPPOTrainer(object):
"""
Note that this trainer runs on the driver process on a single CPU/GPU node.
"""
# TODO: support each role have individual ray_worker_group_cls,
# i.e., support different backend of different role
def __init__(self,
config,
tokenizer,
role_worker_mapping: dict[Role, WorkerType],
resource_pool_manager: ResourcePoolManager,
ray_worker_group_cls: RayWorkerGroup = RayWorkerGroup,
reward_fn=None,
val_reward_fn=None):
# assert torch.cuda.is_available(), 'cuda must be available on driver'
self.tokenizer = tokenizer
self.config = config
self.reward_fn = reward_fn
self.val_reward_fn = val_reward_fn
self.hybrid_engine = config.actor_rollout_ref.hybrid_engine
assert self.hybrid_engine, 'Currently, only support hybrid engine'
if self.hybrid_engine:
assert Role.ActorRollout in role_worker_mapping, f'{role_worker_mapping.keys()=}'
self.role_worker_mapping = role_worker_mapping
self.resource_pool_manager = resource_pool_manager
self.use_reference_policy = Role.RefPolicy in role_worker_mapping
self.use_rm = Role.RewardModel in role_worker_mapping
self.ray_worker_group_cls = ray_worker_group_cls
# define KL control
if self.use_reference_policy:
if config.algorithm.kl_ctrl.type == 'fixed':
self.kl_ctrl = core_algos.FixedKLController(kl_coef=config.algorithm.kl_ctrl.kl_coef)
elif config.algorithm.kl_ctrl.type == 'adaptive':
assert config.algorithm.kl_ctrl.horizon > 0, f'horizon must be larger than 0. Got {config.critic.kl_ctrl.horizon}'
self.kl_ctrl = core_algos.AdaptiveKLController(init_kl_coef=config.algorithm.kl_ctrl.kl_coef,
target_kl=config.algorithm.kl_ctrl.target_kl,
horizon=config.algorithm.kl_ctrl.horizon)
else:
raise NotImplementedError
else:
self.kl_ctrl = core_algos.FixedKLController(kl_coef=0.)
self._create_dataloader()
self._init_logger()
def _init_logger(self):
from verl.utils.tracking import Tracking
self.logger = Tracking(project_name=self.config.trainer.project_name,
experiment_name=self.config.trainer.experiment_name,
default_backend=self.config.trainer.logger,
config=OmegaConf.to_container(self.config, resolve=True))
def _create_dataloader(self):
from torch.utils.data import DataLoader
# TODO: we have to make sure the batch size is divisible by the dp size
from verl.utils.dataset.rl_dataset import RLHFDataset, collate_fn
self.train_dataset = RLHFDataset(parquet_files=self.config.data.train_files,
tokenizer=self.tokenizer,
prompt_key=self.config.data.prompt_key,
max_prompt_length=self.config.data.max_prompt_length,
filter_prompts=True,
return_raw_chat=self.config.data.get('return_raw_chat', False),
truncation='error')
if self.config.data.train_data_num is not None:
if self.config.data.train_data_num > len(self.train_dataset.dataframe):
print(f"[WARNING] training dataset size is smaller than desired size. Using the dataset as the original size {len(self.train_dataset.dataframe)}")
else:
self.train_dataset.dataframe = self.train_dataset.dataframe.sample(self.config.data.train_data_num, random_state=42)
print(f"filtered training dataset size: {len(self.train_dataset.dataframe)}")
self.train_dataloader = DataLoader(dataset=self.train_dataset,
batch_size=self.config.data.train_batch_size,
shuffle=self.config.data.shuffle_train_dataloader,
drop_last=True,
collate_fn=collate_fn)
self.val_dataset = RLHFDataset(parquet_files=self.config.data.val_files,
tokenizer=self.tokenizer,
prompt_key=self.config.data.prompt_key,
max_prompt_length=self.config.data.max_prompt_length,
filter_prompts=True,
return_raw_chat=self.config.data.get('return_raw_chat', False),
truncation='error')
if self.config.data.val_data_num is not None:
if self.config.data.val_data_num > len(self.val_dataset.dataframe):
print(f"[WARNING] validation dataset size is smaller than desired size. Using the dataset as the original size {len(self.val_dataset.dataframe)}")
else:
self.val_dataset.dataframe = self.val_dataset.dataframe.sample(self.config.data.val_data_num, random_state=42)
print(f"filtered validation dataset size: {len(self.val_dataset.dataframe)}")
self.val_dataloader = DataLoader(dataset=self.val_dataset,
batch_size=self.config.data.val_batch_size,
shuffle=False,
drop_last=True,
collate_fn=collate_fn)
print(f'Size of train dataloader: {len(self.train_dataloader)}')
print(f'Size of val dataloader: {len(self.val_dataloader)}')
assert len(self.train_dataloader) >= 1
assert len(self.val_dataloader) >= 1
# inject total_training_steps to actor/critic optim_config. This is hacky.
total_training_steps = len(self.train_dataloader) * self.config.trainer.total_epochs
if self.config.trainer.total_training_steps is not None:
total_training_steps = self.config.trainer.total_training_steps
self.total_training_steps = total_training_steps
print(f'Total training steps: {self.total_training_steps}')
OmegaConf.set_struct(self.config, True)
with open_dict(self.config):
self.config.actor_rollout_ref.actor.optim.total_training_steps = total_training_steps
self.config.critic.optim.total_training_steps = total_training_steps
def _validate(self):
"""
The training loop of PPO with global metric computation.
Accumulates metrics across all batches before computing final statistics.
"""
import torch
reward_tensor_lst = []
data_source_lst = []
gen_config = GenerationConfig(
max_turns=self.config.max_turns,
max_start_length=self.config.data.max_start_length,
max_prompt_length=self.config.data.max_prompt_length,
max_response_length=self.config.data.max_response_length,
max_obs_length=self.config.data.max_obs_length,
num_gpus=self.config.trainer.n_gpus_per_node * self.config.trainer.nnodes,
no_think_rl=self.config.algorithm.no_think_rl,
search_url = self.config.retriever.url,
topk = self.config.retriever.topk,
)
# Agent config preparation
generation_manager = LLMGenerationManager(
tokenizer=self.tokenizer,
actor_rollout_wg=self.actor_rollout_wg,
config=gen_config,
is_validation = True,
)
if not self.config.do_search:
for test_data in self.val_dataloader:
test_batch = DataProto.from_single_dict(test_data)
# we only do validation on rule-based rm
if self.config.reward_model.enable and test_batch[0].non_tensor_batch['reward_model']['style'] == 'model':
return {}
test_gen_batch = test_batch.pop(['input_ids', 'attention_mask', 'position_ids'])
test_gen_batch.meta_info = {
'eos_token_id': self.tokenizer.eos_token_id,
'pad_token_id': self.tokenizer.pad_token_id,
'recompute_log_prob': False,
'do_sample': False,
'validate': True,
}
# pad to be divisible by dp_size
test_gen_batch_padded, pad_size = pad_dataproto_to_divisor(test_gen_batch, self.actor_rollout_wg.world_size)
test_output_gen_batch_padded = self.actor_rollout_wg.generate_sequences(test_gen_batch_padded)
# unpad
test_output_gen_batch = unpad_dataproto(test_output_gen_batch_padded, pad_size=pad_size)
print('validation generation end')
test_batch = test_batch.union(test_output_gen_batch)
# evaluate using reward_function
# for certain reward function (e.g. sandbox), the generation can overlap with reward
reward_tensor = self.val_reward_fn(test_batch)
reward_tensor_lst.append(reward_tensor)
data_source_lst.append(test_batch.non_tensor_batch.get('data_source', ['unknown'] * reward_tensor.shape[0]))
else:
for batch_dict in self.val_dataloader:
timing_raw = {}
test_batch: DataProto = DataProto.from_single_dict(batch_dict)
# test_batch = test_batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n_agent, interleave=True)
test_gen_batch = test_batch.pop(batch_keys=['input_ids', 'attention_mask', 'position_ids'])
test_gen_batch.meta_info = {
'eos_token_id': self.tokenizer.eos_token_id,
'pad_token_id': self.tokenizer.pad_token_id,
'recompute_log_prob': False,
'do_sample': False,
'validate': True,
}
with _timer('step', timing_raw):
first_input_ids = test_gen_batch.batch['input_ids'][:, -gen_config.max_start_length:].clone()
with _timer('gen', timing_raw):
generation_manager.timing_raw = timing_raw
final_gen_batch_output = generation_manager.run_llm_loop(
gen_batch=test_gen_batch,
initial_input_ids=first_input_ids,
)
test_batch = test_batch.union(final_gen_batch_output)
for key in test_batch.batch.keys():
test_batch.batch[key] = test_batch.batch[key].long()
# evaluate using reward_function
# for certain reward function (e.g. sandbox), the generation can overlap with reward
reward_tensor = self.val_reward_fn(test_batch)
reward_tensor_lst.append(reward_tensor)
data_source_lst.append(test_batch.non_tensor_batch.get('data_source', ['unknown'] * reward_tensor.shape[0]))
reward_tensor = torch.cat([rw.sum(-1) for rw in reward_tensor_lst], dim=0).cpu() # (batch_size,)
# reward_tensor = torch.cat(reward_tensor_lst, dim=0).sum(-1).cpu() # (batch_size,)
data_sources = np.concatenate(data_source_lst, axis=0)
# evaluate test_score based on data source
data_source_reward = {}
for i in range(reward_tensor.shape[0]):
data_source = data_sources[i]
if data_source not in data_source_reward:
data_source_reward[data_source] = []
data_source_reward[data_source].append(reward_tensor[i].item())
metric_dict = {}
for data_source, rewards in data_source_reward.items():
metric_dict[f'val/test_score/{data_source}'] = np.mean(rewards)
return metric_dict
def init_workers(self):
"""Init resource pool and worker group"""
self.resource_pool_manager.create_resource_pool()
self.resource_pool_to_cls = {pool: {} for pool in self.resource_pool_manager.resource_pool_dict.values()}
# create actor and rollout
if self.hybrid_engine:
resource_pool = self.resource_pool_manager.get_resource_pool(Role.ActorRollout)
actor_rollout_cls = RayClassWithInitArgs(cls=self.role_worker_mapping[Role.ActorRollout],
config=self.config.actor_rollout_ref,
role='actor_rollout')
self.resource_pool_to_cls[resource_pool]['actor_rollout'] = actor_rollout_cls
else:
raise NotImplementedError
# create critic
if self.config.algorithm.adv_estimator == 'gae':
resource_pool = self.resource_pool_manager.get_resource_pool(Role.Critic)
critic_cls = RayClassWithInitArgs(cls=self.role_worker_mapping[Role.Critic], config=self.config.critic)
self.resource_pool_to_cls[resource_pool]['critic'] = critic_cls
self.use_critic = True
elif self.config.algorithm.adv_estimator == 'grpo':
self.use_critic = False
else:
raise NotImplementedError
# create reference policy if needed
if self.use_reference_policy:
resource_pool = self.resource_pool_manager.get_resource_pool(Role.RefPolicy)
ref_policy_cls = RayClassWithInitArgs(self.role_worker_mapping[Role.RefPolicy],
config=self.config.actor_rollout_ref,
role='ref')
self.resource_pool_to_cls[resource_pool]['ref'] = ref_policy_cls
# create a reward model if reward_fn is None
if self.use_rm:
# we create a RM here
resource_pool = self.resource_pool_manager.get_resource_pool(Role.RewardModel)
rm_cls = RayClassWithInitArgs(self.role_worker_mapping[Role.RewardModel], config=self.config.reward_model)
self.resource_pool_to_cls[resource_pool]['rm'] = rm_cls
# initialize WorkerGroup
# NOTE: if you want to use a different resource pool for each role, which can support different parallel size,
# you should not use `create_colocated_worker_cls`. Instead, directly pass different resource pool to different worker groups.
# See https://github.com/volcengine/verl/blob/master/examples/ray/tutorial.ipynb for more information.
all_wg = {}
self.wg_dicts = []
for resource_pool, class_dict in self.resource_pool_to_cls.items():
worker_dict_cls = create_colocated_worker_cls(class_dict=class_dict)
wg_dict = self.ray_worker_group_cls(resource_pool=resource_pool, ray_cls_with_init=worker_dict_cls)
spawn_wg = wg_dict.spawn(prefix_set=class_dict.keys())
all_wg.update(spawn_wg)
# keep the referece of WorkerDict to support ray >= 2.31. Ref: https://github.com/ray-project/ray/pull/45699
self.wg_dicts.append(wg_dict)
if self.use_critic:
self.critic_wg = all_wg['critic']
self.critic_wg.init_model()
if self.use_reference_policy:
self.ref_policy_wg = all_wg['ref']
self.ref_policy_wg.init_model()
if self.use_rm:
self.rm_wg = all_wg['rm']
self.rm_wg.init_model()
# we should create rollout at the end so that vllm can have a better estimation of kv cache memory
self.actor_rollout_wg = all_wg['actor_rollout']
self.actor_rollout_wg.init_model()
def _save_checkpoint(self):
actor_local_path = os.path.join(self.config.trainer.default_local_dir, 'actor',
f'global_step_{self.global_steps}')
actor_remote_path = None if self.config.trainer.default_hdfs_dir is None else os.path.join(
self.config.trainer.default_hdfs_dir, 'actor')
self.actor_rollout_wg.save_checkpoint(actor_local_path, actor_remote_path)
if self.use_critic:
critic_local_path = os.path.join(self.config.trainer.default_local_dir, 'critic',
f'global_step_{self.global_steps}')
critic_remote_path = None if self.config.trainer.default_hdfs_dir is None else os.path.join(
self.config.trainer.default_hdfs_dir, 'critic')
self.critic_wg.save_checkpoint(critic_local_path, critic_remote_path)
def _balance_batch(self, batch: DataProto, metrics, logging_prefix='global_seqlen'):
"""Reorder the data on single controller such that each dp rank gets similar total tokens"""
attention_mask = batch.batch['attention_mask']
batch_size = attention_mask.shape[0]
global_seqlen_lst = attention_mask.view(batch_size, -1).sum(-1).tolist() # (train_batch_size,)
world_size = self.actor_rollout_wg.world_size
global_partition_lst = get_seqlen_balanced_partitions(global_seqlen_lst,
k_partitions=world_size,
equal_size=True)
# reorder based on index. The data will be automatically equally partitioned by dispatch function
global_idx = torch.tensor([j for partition in global_partition_lst for j in partition])
batch.reorder(global_idx)
global_balance_stats = log_seqlen_unbalance(seqlen_list=global_seqlen_lst,
partitions=global_partition_lst,
prefix=logging_prefix)
metrics.update(global_balance_stats)
def fit(self):
"""
The training loop of PPO.
The driver process only need to call the compute functions of the worker group through RPC to construct the PPO dataflow.
The light-weight advantage computation is done on the driver process.
"""
logger = self.logger
self.global_steps = 0
# perform validation before training
# currently, we only support validation using the reward_function.
if self.val_reward_fn is not None and self.config.trainer.get('val_before_train', True):
val_metrics = self._validate()
pprint(f'Initial validation metrics: {val_metrics}')
logger.log(data=val_metrics, step=self.global_steps)
if self.config.trainer.get('val_only', False):
return
# we start from step 1
self.global_steps += 1
# Agent config preparation
gen_config = GenerationConfig(
max_turns=self.config.max_turns,
max_start_length=self.config.data.max_start_length,
max_prompt_length=self.config.data.max_prompt_length,
max_response_length=self.config.data.max_response_length,
max_obs_length=self.config.data.max_obs_length,
num_gpus=self.config.trainer.n_gpus_per_node * self.config.trainer.nnodes,
no_think_rl=self.config.algorithm.no_think_rl,
search_url = self.config.retriever.url,
topk = self.config.retriever.topk,
)
generation_manager = LLMGenerationManager(
tokenizer=self.tokenizer,
actor_rollout_wg=self.actor_rollout_wg,
config=gen_config,
)
# start training loop
for epoch in range(self.config.trainer.total_epochs):
for batch_dict in self.train_dataloader:
print(f'epoch {epoch}, step {self.global_steps}')
metrics = {}
timing_raw = {}
batch: DataProto = DataProto.from_single_dict(batch_dict)
batch = batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n_agent, interleave=True)
# pop those keys for generation
gen_batch = batch.pop(batch_keys=['input_ids', 'attention_mask', 'position_ids'])
####################
# original code here
with _timer('step', timing_raw):
if not self.config.do_search:
gen_batch_output = self.actor_rollout_wg.generate_sequences(gen_batch)
batch.non_tensor_batch['uid'] = np.array([str(uuid.uuid4()) for _ in range(len(batch.batch))],
dtype=object)
# repeat to align with repeated responses in rollout
batch = batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n, interleave=True)
batch = batch.union(gen_batch_output)
####################
# Below is aLL about agents - the "LLM + forloop"
####################
# with _timer('step', timing_raw):
else:
first_input_ids = gen_batch.batch['input_ids'][:, -gen_config.max_start_length:].clone().long()
with _timer('gen', timing_raw):
generation_manager.timing_raw = timing_raw
final_gen_batch_output = generation_manager.run_llm_loop(
gen_batch=gen_batch,
initial_input_ids=first_input_ids,
)
# final_gen_batch_output.batch.apply(lambda x: x.long(), inplace=True)
for key in final_gen_batch_output.batch.keys():
final_gen_batch_output.batch[key] = final_gen_batch_output.batch[key].long()
with torch.no_grad():
output = self.actor_rollout_wg.compute_log_prob(final_gen_batch_output)
final_gen_batch_output = final_gen_batch_output.union(output)
# batch.non_tensor_batch['uid'] = np.array([str(uuid.uuid4()) for _ in range(len(batch.batch))],
# dtype=object)
batch.non_tensor_batch['uid'] = batch.non_tensor_batch['index'].copy()
# repeat to align with repeated responses in rollout
batch = batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n, interleave=True)
batch = batch.union(final_gen_batch_output)
####################
####################
# balance the number of valid tokens on each dp rank.
# Note that this breaks the order of data inside the batch.
# Please take care when you implement group based adv computation such as GRPO and rloo
self._balance_batch(batch, metrics=metrics)
# compute global_valid tokens
batch.meta_info['global_token_num'] = torch.sum(batch.batch['attention_mask'], dim=-1).tolist()
# batch.batch.apply(lambda x, key: x.long() if key != "old_log_probs" else x, inplace=True, key=True)
for key in batch.batch.keys():
if key != 'old_log_probs':
batch.batch[key] = batch.batch[key].long()
if self.use_reference_policy:
# compute reference log_prob
with _timer('ref', timing_raw):
ref_log_prob = self.ref_policy_wg.compute_ref_log_prob(batch)
batch = batch.union(ref_log_prob)
# compute values
if self.use_critic:
with _timer('values', timing_raw):
values = self.critic_wg.compute_values(batch)
batch = batch.union(values)
with _timer('adv', timing_raw):
# compute scores. Support both model and function-based.
# We first compute the scores using reward model. Then, we call reward_fn to combine
# the results from reward model and rule-based results.
if self.use_rm:
# we first compute reward model score
reward_tensor = self.rm_wg.compute_rm_score(batch)
batch = batch.union(reward_tensor)
# we combine with rule-based rm
reward_tensor = self.reward_fn(batch)
batch.batch['token_level_scores'] = reward_tensor
# compute rewards. apply_kl_penalty if available
if not self.config.actor_rollout_ref.actor.use_kl_loss:
batch, kl_metrics = apply_kl_penalty(batch,
kl_ctrl=self.kl_ctrl,
kl_penalty=self.config.algorithm.kl_penalty)
metrics.update(kl_metrics)
else:
batch.batch['token_level_rewards'] = batch.batch['token_level_scores']
# compute advantages, executed on the driver process
batch = compute_advantage(batch,
adv_estimator=self.config.algorithm.adv_estimator,
gamma=self.config.algorithm.gamma,
lam=self.config.algorithm.lam,
num_repeat=self.config.actor_rollout_ref.rollout.n)
# update critic
if self.use_critic:
with _timer('update_critic', timing_raw):
critic_output = self.critic_wg.update_critic(batch)
critic_output_metrics = reduce_metrics(critic_output.meta_info['metrics'])
metrics.update(critic_output_metrics)
# implement critic warmup
if self.config.trainer.critic_warmup <= self.global_steps:
# update actor
with _timer('update_actor', timing_raw):
if self.config.do_search and self.config.actor_rollout_ref.actor.state_masking:
batch, metrics = self._create_loss_mask(batch, metrics)
actor_output = self.actor_rollout_wg.update_actor(batch)
actor_output_metrics = reduce_metrics(actor_output.meta_info['metrics'])
metrics.update(actor_output_metrics)
# validate
if self.val_reward_fn is not None and self.config.trainer.test_freq > 0 and \
self.global_steps % self.config.trainer.test_freq == 0:
with _timer('testing', timing_raw):
val_metrics: dict = self._validate()
metrics.update(val_metrics)
if self.config.trainer.save_freq > 0 and \
self.global_steps % self.config.trainer.save_freq == 0:
with _timer('save_checkpoint', timing_raw):
self._save_checkpoint()
# collect metrics
metrics.update(compute_data_metrics(batch=batch, use_critic=self.use_critic))
metrics.update(compute_timing_metrics(batch=batch, timing_raw=timing_raw))
# TODO: make a canonical logger that supports various backend
logger.log(data=metrics, step=self.global_steps)
self.global_steps += 1
if self.global_steps >= self.total_training_steps:
# perform validation after training
if self.val_reward_fn is not None:
val_metrics = self._validate()
pprint(f'Final validation metrics: {val_metrics}')
logger.log(data=val_metrics, step=self.global_steps)
return
def _create_loss_mask(self, batch, metrics):
"""Create loss mask for state tokens."""
response_length = batch.batch['responses'].shape[-1]
response_mask = batch.batch['attention_mask'][:, -response_length:]
loss_mask = batch.batch['info_mask'][:, -response_length:]
batch.batch['loss_mask'] = loss_mask
metrics.update({
'state_tokens/total': loss_mask.sum().item(),
'state_tokens/coverage': (loss_mask.sum() / response_mask.sum()).item(),
})
return batch, metrics