Files
Search-R1/verl/utils/dataset/rl_dataset.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

156 lines
5.6 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from omegaconf import ListConfig
import os
from typing import List, Union
import pandas as pd
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, PreTrainedTokenizer
from verl.utils.fs import copy_local_path_from_hdfs
from verl.utils.model import compute_position_id_with_mask
import verl.utils.torch_functional as verl_F
def collate_fn(data_list: list[dict]) -> dict:
tensors = {}
non_tensors = {}
for data in data_list:
for key, val in data.items():
if isinstance(val, torch.Tensor):
if key not in tensors:
tensors[key] = []
tensors[key].append(val)
else:
if key not in non_tensors:
non_tensors[key] = []
non_tensors[key].append(val)
for key, val in tensors.items():
tensors[key] = torch.stack(val, dim=0)
for key, val in non_tensors.items():
non_tensors[key] = np.array(val, dtype=object)
output = {}
output.update(tensors)
output.update(non_tensors)
return output
class RLHFDataset(Dataset):
"""
We assume the dataset contains a column that contains prompts and other information
"""
def __init__(self,
parquet_files: Union[str, List[str]],
tokenizer: PreTrainedTokenizer,
prompt_key='prompt',
max_prompt_length=1024,
filter_prompts=True,
cache_dir='~/.cache/verl/rlhf',
chat_template_func=None,
return_raw_chat=False,
truncation='error'):
if not isinstance(parquet_files, (List, ListConfig)):
parquet_files = [parquet_files]
self.parquet_files = parquet_files
self.cache_dir = os.path.expanduser(cache_dir)
self.tokenizer = tokenizer
self.prompt_key = prompt_key
self.max_prompt_length = max_prompt_length
self.filter_prompts = filter_prompts
self.return_raw_chat = return_raw_chat
self.chat_template_func = chat_template_func
self.truncation = truncation
self._download()
self._read_files_and_tokenize()
def _download(self):
from verl.utils.fs import copy_local_path_from_hdfs
for i, parquet_file in enumerate(self.parquet_files):
self.parquet_files[i] = copy_local_path_from_hdfs(src=parquet_file, cache_dir=self.cache_dir)
def _read_files_and_tokenize(self):
dataframes = []
for parquet_file in self.parquet_files:
# read parquet files and cache
dataframe = pd.read_parquet(parquet_file)
dataframes.append(dataframe)
self.dataframe = pd.concat(dataframes)
print(f'original dataset len: {len(self.dataframe)}')
# filter out too long prompts
tokenizer = self.tokenizer
prompt_key = self.prompt_key
# nvm if prompt is too long
# self.dataframe = self.dataframe[self.dataframe.apply(lambda doc: len(
# tokenizer.apply_chat_template(doc[prompt_key], add_generation_prompt=True)) <= self.max_prompt_length,
# axis=1)]
print(f'filter dataset len: {len(self.dataframe)}')
def __len__(self):
return len(self.dataframe)
def __getitem__(self, item):
"""
Note that we also return the raw_input_ids so that it can be combined with other chat template
"""
row_dict = self.dataframe.iloc[item].to_dict()
chat = row_dict.pop(self.prompt_key)
if self.tokenizer.chat_template:
prompt_with_chat_template = self.tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=False)
else:
prompt_with_chat_template = chat[0]['content']
# prompt_with_chat_template = chat
input_ids, attention_mask = verl_F.tokenize_and_postprocess_data(prompt=prompt_with_chat_template,
tokenizer=self.tokenizer,
max_length=self.max_prompt_length,
pad_token_id=self.tokenizer.pad_token_id,
left_pad=True,
truncation=self.truncation)
position_ids = compute_position_id_with_mask(attention_mask)
row_dict['input_ids'] = input_ids[0]
row_dict['attention_mask'] = attention_mask[0]
row_dict['position_ids'] = position_ids[0]
# encode prompts without chat template
if self.return_raw_chat:
row_dict['raw_prompt'] = chat.tolist()
# add index for each prompt
index = row_dict.get("extra_info", {}).get("index", 0)
row_dict["index"] = index
return row_dict