Files
Search-R1/search_r1/search/rerank_server.py
PeterGriffinJin e23b879116 add reranker
2025-04-08 00:37:39 +00:00

162 lines
5.2 KiB
Python

import argparse
from collections import defaultdict
from typing import Optional
from dataclasses import dataclass, field
from sentence_transformers import CrossEncoder
import torch
from transformers import HfArgumentParser
import numpy as np
import uvicorn
from fastapi import FastAPI
from pydantic import BaseModel
class BaseCrossEncoder:
def __init__(self, model, batch_size=32, device="cuda"):
self.model = model
self.batch_size = batch_size
self.model.to(device)
def _passage_to_string(self, doc_item):
if "document" not in doc_item:
content = doc_item['contents']
else:
content = doc_item['document']['contents']
title = content.split("\n")[0]
text = "\n".join(content.split("\n")[1:])
return f"(Title: {title}) {text}"
def rerank(self,
queries: list[str],
documents: list[list[dict]]):
"""
Assume documents is a list of list of dicts, where each dict is a document with keys "id" and "contents".
This asumption is made to be consistent with the output of the retrieval server.
"""
assert len(queries) == len(documents)
pairs = []
qids = []
for qid, query in enumerate(queries):
for document in documents:
for doc_item in document:
doc = self._passage_to_string(doc_item)
pairs.append((query, doc))
qids.append(qid)
scores = self._predict(pairs)
query_to_doc_scores = defaultdict(list)
assert len(scores) == len(pairs) == len(qids)
for i in range(len(pairs)):
query, doc = pairs[i]
score = scores[i]
qid = qids[i]
query_to_doc_scores[qid].append((doc, score))
sorted_query_to_doc_scores = {}
for query, doc_scores in query_to_doc_scores.items():
sorted_query_to_doc_scores[query] = sorted(doc_scores, key=lambda x: x[1], reverse=True)
return sorted_query_to_doc_scores
def _predict(self, pairs: list[tuple[str, str]]):
raise NotImplementedError
@classmethod
def load(cls, model_name_or_path, **kwargs):
raise NotImplementedError
class SentenceTransformerCrossEncoder(BaseCrossEncoder):
def __init__(self, model, batch_size=32, device="cuda"):
super().__init__(model, batch_size, device)
def _predict(self, pairs: list[tuple[str, str]]):
scores = self.model.predict(pairs, batch_size=self.batch_size)
scores = scores.tolist() if isinstance(scores, torch.Tensor) or isinstance(scores, np.ndarray) else scores
return scores
@classmethod
def load(cls, model_name_or_path, **kwargs):
model = CrossEncoder(model_name_or_path)
return cls(model, **kwargs)
class RerankRequest(BaseModel):
queries: list[str]
documents: list[list[dict]]
rerank_topk: Optional[int] = None
return_scores: bool = False
@dataclass
class RerankerArguments:
max_length: int = field(default=512)
rerank_topk: int = field(default=3)
rerank_model_name_or_path: str = field(default="cross-encoder/ms-marco-MiniLM-L12-v2")
batch_size: int = field(default=32)
reranker_type: str = field(default="sentence_transformer")
def get_reranker(config):
if config.reranker_type == "sentence_transformer":
return SentenceTransformerCrossEncoder.load(
config.rerank_model_name_or_path,
batch_size=config.batch_size,
device="cuda" if torch.cuda.is_available() else "cpu"
)
else:
raise ValueError(f"Unknown reranker type: {config.reranker_type}")
app = FastAPI()
@app.post("/rerank")
def rerank_endpoint(request: RerankRequest):
"""
Endpoint that accepts queries and performs retrieval.
Input format:
{
"queries": ["What is Python?", "Tell me about neural networks."],
"documents": [[doc_item_1, ..., doc_item_k], [doc_item_1, ..., doc_item_k]],
"rerank_topk": 3,
"return_scores": true
}
"""
if not request.rerank_topk:
request.rerank_topk = config.rerank_topk # fallback to default
# Perform batch re reranking
# doc_scores already sorted by score
query_to_doc_scores = reranker.rerank(request.queries, request.documents)
# Format response
resp = []
for _, doc_scores in query_to_doc_scores.items():
doc_scores = doc_scores[:request.rerank_topk]
if request.return_scores:
combined = []
for doc, score in doc_scores:
combined.append({"document": doc, "score": score})
resp.append(combined)
else:
resp.append([doc for doc, _ in doc_scores])
return {"result": resp}
if __name__ == "__main__":
# 1) Build a config (could also parse from arguments).
# In real usage, you'd parse your CLI arguments or environment variables.
parser = HfArgumentParser((RerankerArguments))
config = parser.parse_args_into_dataclasses()[0]
# 2) Instantiate a global retriever so it is loaded once and reused.
reranker = get_reranker(config)
# 3) Launch the server. By default, it listens on http://127.0.0.1:8000
uvicorn.run(app, host="0.0.0.0", port=6980)