Files
Search-R1/verl/utils/megatron/optimizer.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

93 lines
4.2 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from apex.optimizers import FusedAdam as Adam
from apex.optimizers import FusedSGD as SGD
from megatron.optimizer.distrib_optimizer import DistributedOptimizer
from megatron.optimizer.grad_scaler import ConstantGradScaler, DynamicGradScaler
from megatron.optimizer import Float16OptimizerWithFloat16Params, FP32Optimizer
from megatron.optimizer import get_param_groups
from verl.utils.megatron.optimizer_config import OptimizerConfig
def get_megatron_optimizer(
model,
config: OptimizerConfig,
no_weight_decay_cond=None,
scale_lr_cond=None,
lr_mult=1.0,
check_for_nan_in_loss_and_grad=False,
overlap_param_gather=False # add for verl
):
# Base optimizer.
param_groups = get_param_groups(model, no_weight_decay_cond, scale_lr_cond, lr_mult)
if config.optimizer == 'adam':
optimizer = Adam(param_groups,
lr=config.lr,
weight_decay=config.weight_decay,
betas=(config.adam_beta1, config.adam_beta2),
eps=config.adam_eps)
elif config.optimizer == 'sgd':
optimizer = SGD(param_groups, lr=config.lr, weight_decay=config.weight_decay, momentum=config.sgd_momentum)
else:
raise Exception('{} optimizer is not supported.'.format(config.optimizer))
# Determine whether the params have main-grad field.
params_have_main_grad = True
# Mixed precision optimizer.
# - Note: both the Float16Optimizer and the DistributedOptimizer inherit
# from the MixedPrecisionOptimizer, which manages any optimizer where
# the model params and main params are distinct.
if config.fp16 or config.bf16 or config.use_distributed_optimizer:
# Grad scaler:
# if loss-scale is provided, instantiate the constant scaler.
# if we are using fp16 and loss-scale is not present, use a
# dynamic scaler.
# otherwise we are running in bf16 with no loss-scale so
# leave it as None.
grad_scaler = None
# Constant loss scale.
if config.loss_scale:
grad_scaler = ConstantGradScaler(config.loss_scale)
# Dynamic loss scale.
else:
if config.fp16:
grad_scaler = DynamicGradScaler(initial_scale=config.initial_loss_scale,
min_scale=config.min_loss_scale,
growth_factor=2.0,
backoff_factor=0.5,
growth_interval=config.loss_scale_window,
hysteresis=config.hysteresis)
# Megatron optimizer.
if config.use_distributed_optimizer:
return DistributedOptimizer(optimizer, config.clip_grad, config.log_num_zeros_in_grad,
check_for_nan_in_loss_and_grad, params_have_main_grad, config.fp16, config.bf16,
config.params_dtype, grad_scaler, model, overlap_param_gather)
else:
return Float16OptimizerWithFloat16Params(optimizer, config.clip_grad, config.log_num_zeros_in_grad,
check_for_nan_in_loss_and_grad, params_have_main_grad, config.fp16,
config.bf16, config.params_dtype, grad_scaler, model)
# FP32.
return FP32Optimizer(optimizer, config.clip_grad, config.log_num_zeros_in_grad, check_for_nan_in_loss_and_grad,
params_have_main_grad, model)