Files
Search-R1/verl/models/llama/megatron/layers/parallel_mlp.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

75 lines
3.3 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from megatron.core import parallel_state as mpu
from megatron.core import tensor_parallel
from megatron.core import ModelParallelConfig
from torch import nn
from transformers.activations import ACT2FN
from verl.models.llama.megatron.layers.parallel_linear import MergedColumnParallelLinear
from verl.utils.megatron import tensor_parallel as tp_utils
class ParallelLlamaMLP(nn.Module):
def __init__(self, config, megatron_config: ModelParallelConfig = None) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
# The weight is only [hidden_size, intermediate_size // model_parallel_world_size]
column_kwargs = tp_utils.get_default_kwargs_for_column_parallel_linear()
row_kwargs = tp_utils.get_default_kwargs_for_row_parallel_linear()
if megatron_config is not None:
assert column_kwargs.get('config', False), 'must have ModelParallelConfig'
assert row_kwargs.get('config', False), 'must have ModelParallelConfig'
tp_utils.update_kwargs_with_config(row_kwargs, megatron_config)
tp_utils.update_kwargs_with_config(column_kwargs, megatron_config)
tp_size = mpu.get_tensor_model_parallel_world_size()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=self.hidden_size,
gate_ouput_size=self.intermediate_size,
up_output_size=self.intermediate_size,
bias=False,
gather_output=False,
skip_bias_add=False,
**column_kwargs,
)
self.gate_size = self.intermediate_size // tp_size
self.down_proj = tensor_parallel.RowParallelLinear(input_size=self.intermediate_size,
output_size=self.hidden_size,
bias=False,
input_is_parallel=True,
skip_bias_add=False,
**row_kwargs)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
gate_up = self.gate_up_proj(x)[0]
gate, up = gate_up.split(self.gate_size, dim=-1)
return self.down_proj(self.act_fn(gate) * up)[0]