Files
Search-R1/verl/utils/reward_score/qa_em.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

139 lines
4.5 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import string
import random
def normalize_answer(s):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def em_check(prediction, golden_answers):
if isinstance(golden_answers, str):
golden_answers = [golden_answers]
normalized_prediction = normalize_answer(prediction)
score = 0
for golden_answer in golden_answers:
golden_answer = normalize_answer(golden_answer)
if golden_answer == normalized_prediction:
score = 1
break
return score
def subem_check(prediction, golden_answers):
if isinstance(golden_answers, str):
golden_answers = [golden_answers]
normalized_prediction = normalize_answer(prediction)
score = 0
for golden_answer in golden_answers:
golden_answer = normalize_answer(golden_answer)
if golden_answer in normalized_prediction:
score = 1
break
return score
def extract_solution(solution_str):
"""Extract the equation from the solution string."""
# Remove everything before the first "Assistant:"
# if "Assistant:" in solution_str:
# solution_str = solution_str.split("Assistant:", 1)[1]
# elif "<|im_start|>assistant" in solution_str:
# solution_str = solution_str.split("<|im_start|>assistant", 1)[1]
# else:
# return None
# solution_str = solution_str.split('\n')[-1]
answer_pattern = r'<answer>(.*?)</answer>'
match = re.finditer(answer_pattern, solution_str, re.DOTALL)
matches = list(match)
# If there are 0 or exactly 1 matches, return None
if len(matches) <= 1:
return None
# If there are 2 or more matches, return the last one
return matches[-1].group(1).strip()
def compute_score_em(solution_str, ground_truth, method='strict', format_score=0., score=1.):
"""The scoring function for exact match (EM).
Args:
solution_str: the solution text
ground_truth: the ground truth
method: the method to extract the solution, choices are 'strict' and 'flexible'
format_score: the score for the format
score: the score for the correct answer
"""
answer = extract_solution(solution_str=solution_str)
do_print = random.randint(1, 64) == 1
if do_print:
print(f"--------------------------------")
print(f"Golden answers: {ground_truth['target']}")
print(f"Extracted answer: {answer}")
print(f"Solution string: {solution_str}")
if answer is None:
return 0
else:
if em_check(answer, ground_truth['target']):
return score
else:
return format_score
def compute_score_subem(solution_str, ground_truth, method='strict', format_score=0., score=1.):
"""The scoring function for substring exact match (EM).
Args:
solution_str: the solution text
ground_truth: the ground truth
method: the method to extract the solution, choices are 'strict' and 'flexible'
format_score: the score for the format
score: the score for the correct answer
"""
answer = extract_solution(solution_str=solution_str)
do_print = random.randint(1, 64) == 1
if do_print:
print(f"--------------------------------")
print(f"Golden answers: {ground_truth['target']}")
print(f"Extracted answer: {answer}")
print(f"Solution string: {solution_str}")
if answer is None:
return 0
else:
if subem_check(answer, ground_truth['target']):
return score
else:
return format_score