291 lines
14 KiB
Python
291 lines
14 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Single Process Actor
|
|
"""
|
|
|
|
import itertools
|
|
from typing import Iterable, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
|
|
|
from verl import DataProto
|
|
from verl.trainer.ppo import core_algos
|
|
from verl.workers.actor import BasePPOActor
|
|
from verl.utils.py_functional import append_to_dict
|
|
from verl.utils.torch_functional import logprobs_from_logits, masked_mean
|
|
from verl.utils.ulysses import ulysses_pad_and_slice_inputs, gather_outpus_and_unpad
|
|
from verl.utils.seqlen_balancing import rearrange_micro_batches, get_reverse_idx
|
|
import verl.utils.torch_functional as verl_F
|
|
|
|
from flash_attn.bert_padding import pad_input, unpad_input, rearrange, index_first_axis
|
|
|
|
__all__ = ['DataParallelPPOActor']
|
|
|
|
|
|
class DataParallelPPOActor(BasePPOActor):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
actor_module: nn.Module,
|
|
actor_optimizer: torch.optim.Optimizer = None,
|
|
):
|
|
"""When optimizer is None, it is Reference Policy"""
|
|
super().__init__(config)
|
|
self.actor_module = actor_module
|
|
self.actor_optimizer = actor_optimizer
|
|
self.use_remove_padding = self.config.get('use_remove_padding', False)
|
|
print(f'Actor use_remove_padding={self.use_remove_padding}')
|
|
self.ulysses_sequence_parallel_size = self.config.ulysses_sequence_parallel_size
|
|
self.use_ulysses_sp = self.ulysses_sequence_parallel_size > 1
|
|
|
|
self.compute_entropy_from_logits = torch.compile(verl_F.entropy_from_logits, dynamic=True)
|
|
|
|
def _forward_micro_batch(self, micro_batch, temperature) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Returns:
|
|
entropy: # (bs, response_len)
|
|
log_probs: # (bs, response_len)
|
|
"""
|
|
response_length = micro_batch['responses'].size(-1)
|
|
with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
|
|
input_ids = micro_batch['input_ids']
|
|
batch_size, seqlen = input_ids.shape
|
|
attention_mask = micro_batch['attention_mask']
|
|
position_ids = micro_batch['position_ids']
|
|
|
|
if self.use_remove_padding:
|
|
input_ids_rmpad, indices, *_ = unpad_input(input_ids.unsqueeze(-1),
|
|
attention_mask) # input_ids_rmpad (total_nnz, ...)
|
|
input_ids_rmpad = input_ids_rmpad.transpose(0, 1) # (1, total_nnz)
|
|
|
|
# unpad the position_ids to align the rotary
|
|
position_ids_rmpad = index_first_axis(rearrange(position_ids.unsqueeze(-1), "b s ... -> (b s) ..."),
|
|
indices).transpose(0, 1)
|
|
|
|
# for compute the log_prob
|
|
input_ids_rmpad_rolled = torch.roll(input_ids_rmpad, shifts=-1, dims=1) # (1, total_nnz)
|
|
|
|
# pad and slice the inputs if sp > 1
|
|
if self.use_ulysses_sp:
|
|
input_ids_rmpad, position_ids_rmpad, pad_size = ulysses_pad_and_slice_inputs(input_ids_rmpad, \
|
|
position_ids_rmpad, \
|
|
sp_size=self.ulysses_sequence_parallel_size)
|
|
input_ids_rmpad_rolled, _, _ = ulysses_pad_and_slice_inputs(input_ids_rmpad_rolled, None,
|
|
self.ulysses_sequence_parallel_size)
|
|
|
|
input_ids_rmpad_rolled = input_ids_rmpad_rolled.squeeze(0) # ((total_nnz / sp) + pad)
|
|
|
|
# only pass input_ids and position_ids to enable flash_attn_varlen
|
|
output = self.actor_module(input_ids=input_ids_rmpad,
|
|
attention_mask=None,
|
|
position_ids=position_ids_rmpad,
|
|
use_cache=False) # prevent model thinks we are generating
|
|
logits_rmpad = output.logits.squeeze(0) # (total_nnz, vocab_size)
|
|
|
|
logits_rmpad.div_(temperature)
|
|
|
|
# compute entropy
|
|
entropy_rmpad = self.compute_entropy_from_logits(logits_rmpad) # ((total_nnz / sp) + pad)
|
|
|
|
# if use_sp: ((total_nnz / sp) + pad) ; if not use_sp: (batch, seqlen)
|
|
log_probs = logprobs_from_logits(logits=logits_rmpad, labels=input_ids_rmpad_rolled)
|
|
|
|
# gather log_prob if sp > 1
|
|
if self.use_ulysses_sp:
|
|
# gather and unpad for the ulysses sp
|
|
log_probs = gather_outpus_and_unpad(log_probs, gather_dim=0, unpad_dim=0, padding_size=pad_size)
|
|
entropy_rmpad = gather_outpus_and_unpad(entropy_rmpad,
|
|
gather_dim=0,
|
|
unpad_dim=0,
|
|
padding_size=pad_size)
|
|
# pad back to (bsz, seqlen)
|
|
full_entropy = pad_input(hidden_states=entropy_rmpad.unsqueeze(-1),
|
|
indices=indices,
|
|
batch=batch_size,
|
|
seqlen=seqlen)
|
|
full_log_probs = pad_input(hidden_states=log_probs.unsqueeze(-1),
|
|
indices=indices,
|
|
batch=batch_size,
|
|
seqlen=seqlen)
|
|
|
|
# only return response part:
|
|
entropy = full_entropy.squeeze(-1)[:, -response_length - 1:-1] # (bsz, response_length)
|
|
log_probs = full_log_probs.squeeze(-1)[:, -response_length - 1:-1] # (bsz, response_length)
|
|
|
|
else: # not using rmpad and no ulysses sp
|
|
output = self.actor_module(input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
use_cache=False) # prevent model thinks we are generating
|
|
logits = output.logits
|
|
logits.div_(temperature)
|
|
logits = logits[:, -response_length - 1:-1] # (bsz, response_length)
|
|
log_probs = logprobs_from_logits(logits, micro_batch['responses'])
|
|
entropy = verl_F.entropy_from_logits(logits) # (bsz, response_length)
|
|
|
|
return entropy, log_probs
|
|
|
|
def _optimizer_step(self):
|
|
assert self.config.grad_clip is not None
|
|
|
|
if isinstance(self.actor_module, FSDP):
|
|
grad_norm = self.actor_module.clip_grad_norm_(max_norm=self.config.grad_clip)
|
|
else:
|
|
grad_norm = torch.nn.utils.clip_grad_norm_(self.actor_module.parameters(), max_norm=self.config.grad_clip)
|
|
self.actor_optimizer.step()
|
|
return grad_norm
|
|
|
|
def compute_log_prob(self, data: DataProto) -> torch.Tensor:
|
|
"""Compute the log probability of the responses given input_ids, attention_mask and position_ids
|
|
|
|
Args:
|
|
data (DataProto): a DataProto containing keys
|
|
|
|
``input_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. Note that input_ids is the
|
|
concatenation of prompt and response. Note that ``sequence_length = prompt_length + response_length``.
|
|
|
|
``attention_mask``: tensor of shape [batch_size, sequence_length]. torch.int64.
|
|
|
|
``position_ids``: tensor of shape [batch_size, sequence_length]. torch.int64.
|
|
|
|
``responses``: tensor of shape [batch_size, response_length]. torch.int64.
|
|
|
|
Returns:
|
|
torch.Tensor: the log_prob tensor
|
|
"""
|
|
# set to eval
|
|
self.actor_module.eval()
|
|
|
|
micro_batch_size = data.meta_info['micro_batch_size']
|
|
temperature = data.meta_info['temperature'] # temperature must be in the data.meta_info to avoid slient error
|
|
use_dynamic_bsz = data.meta_info['use_dynamic_bsz']
|
|
|
|
select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids']
|
|
batch = data.select(batch_keys=select_keys).batch
|
|
|
|
if use_dynamic_bsz:
|
|
# split using dynamic bsz
|
|
max_token_len = data.meta_info['max_token_len'] * self.ulysses_sequence_parallel_size
|
|
micro_batches, indices = rearrange_micro_batches(batch=batch, max_token_len=max_token_len)
|
|
else:
|
|
micro_batches = batch.split(micro_batch_size)
|
|
|
|
log_probs_lst = []
|
|
for micro_batch in micro_batches:
|
|
with torch.no_grad():
|
|
_, log_probs = self._forward_micro_batch(micro_batch, temperature=temperature)
|
|
log_probs_lst.append(log_probs)
|
|
log_probs = torch.concat(log_probs_lst, dim=0)
|
|
|
|
if use_dynamic_bsz:
|
|
indices = list(itertools.chain.from_iterable(indices))
|
|
assert len(indices) == log_probs.size(0), f"{len(indices)} vs. {log_probs.size()}"
|
|
revert_indices = torch.tensor(get_reverse_idx(indices), dtype=torch.long)
|
|
log_probs = log_probs[revert_indices]
|
|
|
|
return log_probs
|
|
|
|
def update_policy(self, data: DataProto):
|
|
# make sure we are in training mode
|
|
self.actor_module.train()
|
|
|
|
assert self.config.ppo_mini_batch_size % self.config.ppo_micro_batch_size == 0
|
|
self.gradient_accumulation = self.config.ppo_mini_batch_size // self.config.ppo_micro_batch_size
|
|
temperature = data.meta_info['temperature'] # temperature must be in the data.meta_info to avoid slient error
|
|
|
|
select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids', 'old_log_probs', 'advantages']
|
|
if self.config.state_masking:
|
|
select_keys.append('loss_mask')
|
|
if self.config.use_kl_loss:
|
|
select_keys.append('ref_log_prob')
|
|
batch = data.select(batch_keys=select_keys).batch
|
|
|
|
# Split to make minibatch iterator for updating the actor
|
|
# See PPO paper for details. https://arxiv.org/abs/1707.06347
|
|
dataloader = batch.split(self.config.ppo_mini_batch_size)
|
|
|
|
metrics = {}
|
|
for batch_idx, data in enumerate(dataloader):
|
|
# split batch into micro_batches
|
|
mini_batch = data
|
|
if self.config.use_dynamic_bsz:
|
|
max_token_len = self.config.ppo_max_token_len_per_gpu * self.ulysses_sequence_parallel_size
|
|
micro_batches, _ = rearrange_micro_batches(batch=mini_batch, max_token_len=max_token_len)
|
|
else:
|
|
# split batch into micro_batches
|
|
micro_batches = mini_batch.split(self.config.ppo_micro_batch_size)
|
|
|
|
self.actor_optimizer.zero_grad()
|
|
|
|
for data in micro_batches:
|
|
data = data.cuda() # actor device is cpu when using offload
|
|
responses = data['responses']
|
|
response_length = responses.size(1)
|
|
attention_mask = data['attention_mask']
|
|
response_mask = attention_mask[:, -response_length:]
|
|
if self.config.state_masking:
|
|
response_mask = data['loss_mask']
|
|
old_log_prob = data['old_log_probs']
|
|
advantages = data['advantages']
|
|
|
|
clip_ratio = self.config.clip_ratio
|
|
entropy_coeff = self.config.entropy_coeff
|
|
|
|
# all return: (bsz, response_length)
|
|
entropy, log_prob = self._forward_micro_batch(micro_batch=data, temperature=temperature)
|
|
|
|
pg_loss, pg_clipfrac, ppo_kl = core_algos.compute_policy_loss(old_log_prob=old_log_prob,
|
|
log_prob=log_prob,
|
|
advantages=advantages,
|
|
eos_mask=response_mask,
|
|
cliprange=clip_ratio)
|
|
# compute entropy loss from entropy
|
|
entropy_loss = verl_F.masked_mean(entropy, response_mask)
|
|
|
|
# compute policy loss
|
|
policy_loss = pg_loss - entropy_loss * entropy_coeff
|
|
|
|
if self.config.use_kl_loss:
|
|
ref_log_prob = data['ref_log_prob']
|
|
# compute kl loss
|
|
kld = core_algos.kl_penalty(logprob=log_prob,
|
|
ref_logprob=ref_log_prob,
|
|
kl_penalty=self.config.kl_loss_type)
|
|
kl_loss = masked_mean(kld, response_mask)
|
|
|
|
policy_loss = policy_loss - kl_loss * self.config.kl_loss_coef
|
|
metrics['actor/kl_loss'] = kl_loss.detach().item()
|
|
metrics['actor/kl_coef'] = self.config.kl_loss_coef
|
|
|
|
loss = policy_loss / self.gradient_accumulation
|
|
loss.backward()
|
|
|
|
data = {
|
|
'actor/entropy_loss': entropy_loss.detach().item(),
|
|
'actor/pg_loss': pg_loss.detach().item(),
|
|
'actor/pg_clipfrac': pg_clipfrac.detach().item(),
|
|
'actor/ppo_kl': ppo_kl.detach().item(),
|
|
}
|
|
append_to_dict(metrics, data)
|
|
|
|
grad_norm = self._optimizer_step()
|
|
data = {'actor/grad_norm': grad_norm.detach().item()}
|
|
append_to_dict(metrics, data)
|
|
self.actor_optimizer.zero_grad()
|
|
return metrics
|