Files
Search-R1/verl/workers/actor/megatron_actor.py
PeterGriffinJin 068516be64 Initial commit
2025-02-28 15:16:19 +00:00

369 lines
18 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Megatron Actor.
In megatron actor, the differences are:
1. We only make minibatch
Note that our model doesn't have to be `MegatronModule` because we don't share embedding in the last layer
"""
from functools import partial
from typing import Iterable, Dict
import torch
from torch import nn
import torch.distributed
# from megatron import get_args
from megatron.optimizer import DistributedOptimizer
from verl.utils.megatron.optimizer_config import OptimizerConfig
from megatron.core import parallel_state as mpu
from megatron.core import ModelParallelConfig
from megatron.core.pipeline_parallel import get_forward_backward_func
# from megatron.core.optimizer import DistributedOptimizer
from omegaconf import OmegaConf
from verl.utils.megatron.tensor_parallel import vocab_parallel_compute_entropy_loss, vocab_parallel_log_probs_from_logits
from verl.utils.megatron.pipeline_parallel import (compute_transformers_input_shapes, make_batch_generator)
from verl import DataProto
from verl.trainer.ppo import core_algos
from verl.workers.actor import BasePPOActor
from verl.utils.py_functional import append_to_dict
from verl.utils.torch_functional import logprobs_from_logits, broadcast_dict_tensor, split_dict_tensor_into_batches
__all__ = ['MegatronPPOActor']
class MegatronPPOActor(BasePPOActor):
def __init__(self, config, model_config, megatron_config: ModelParallelConfig, actor_module: nn.ModuleList,
actor_optimizer: DistributedOptimizer, actor_optimizer_config: OptimizerConfig):
"""MeagtronPPOActor class. This class implements the simple PPO logics when the model is built with Megatron.
Args:
config (OmegaConf): the basic config that contains the hyper-parameters of PPO Actor. It must contain
``ppo_micro_batch_size``: minibatch size when updating ppo.
``ppo_mini_batch_size``: minibatch size when updating ppo using the batch data.
``ppo_epochs``: number of epochs to update the actor using the batch data.
``shuffle``: whether to shuffle the data after each ppo epoch.
``clip_ratio``: clip ratio of the ppo algorithm. See https://arxiv.org/abs/1707.06347.
``entropy_coeff``: entropy coefficient of the PPO loss. See https://arxiv.org/abs/1707.06347.
model_config (OmegaConf): model configuration. It must contains ``model_config.vocab_size`` and
``model_config.hidden_size``
megatron_config (OmegaConf): megatron configuration. It must contains
``sequence_parallel_enabled``: whether the sequence parallel is enabled.
``param_dtype``: the dtype of the parameters.
``virtual_pipeline_model_parallel_size``: virtual pipeline model parallel size. a.k.a number of chunks in each pp stage.
actor_module (nn.ModuleList): actor module is a ModuleList that contains a list of nn.Module in this pp stage.
each nn.Module in this rank holds a vpp module chunk. See https://arxiv.org/pdf/2104.04473.pdf for more details.
The actor module has some constraints to follow in order to use the updating logics implemented here
1. It must implement unpad_input before any computation and pad_input after all the computation. Remove padding is an
optimization that removes the padding tokens. See unpad_input and pad_input function in flash-attn
(https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/bert_padding.py).
2. Each pp stage must return the hidden state with the same shape [total_nnz, 1, hidden_size],
where total_nnz is the number of valid tokens in this batch. If sequence parallel is enabled, the size
of the hidden state is [total_nnz // tp, 1, hidden_size].
actor_optimizer (DistributedOptimizer): currently, we only support DistributedOptimizer in Megatron. It implements
zero1 optimizer that shards the optimizer state across dp ranks.
>>> def megatron_actor_model_provider(pre_process, post_process):
>>> vpp_rank = mpu.get_virtual_pipeline_model_parallel_rank()
>>> parallel_model = ParallelMistralForCausalLMRmPadPP(config=actor_model_config,
>>> megatron_config=megatron_config,
>>> pre_process=pre_process,
>>> post_process=post_process).cuda()
>>> return parallel_model
>>> from megatron.training import get_model
>>> from megatron.optimizer import get_megatron_optimizer
>>> actor_module = get_model(megatron_actor_model_provider, wrap_with_ddp=True)
>>> actor_module = nn.ModuleList(actor_module)
>>> actor_optimizer = get_megatron_optimizer(actor_module)
>>> actor = MegatronPPOActor(config=config,
>>> model_config=actor_model_config,
>>> megatron_config=megatron_config,
>>> actor_module=actor_module,
>>> actor_optimizer=actor_optimizer)
"""
super().__init__(config)
self.model_config = model_config
self.megatron_config = megatron_config
# self.megatron_args = get_args()
self.actor_module = actor_module
self.actor_optimizer: DistributedOptimizer = actor_optimizer
self.actor_optimizer_config = actor_optimizer_config
self.optimizer_step_args = OmegaConf.create({
'skip_grad': None,
'overlap_dp_param_comm': False,
'overlap_dp_grad_comm': False,
'gradient_accumulation_steps': 1,
'sequence_parallel': self.megatron_config.sequence_parallel,
'DDP_impl': 'local',
'layernorm_allreduce_bucket_threshold': 0,
'pipeline_model_parallel_split_rank': None,
'reduce_grads_use_alltoall': False
})
def compute_log_prob(self, data: DataProto) -> torch.Tensor:
"""Compute the log probability of the responses given input_ids, attention_mask and position_ids
Args:
data (DataProto): a DataProto containing keys
``input_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. Note that input_ids is the
concatenation of prompt and response. Note that ``sequence_length = prompt_length + response_length``.
``attention_mask``: tensor of shape [batch_size, sequence_length]. torch.int64.
``position_ids``: tensor of shape [batch_size, sequence_length]. torch.int64.
``responses``: tensor of shape [batch_size, response_length]. torch.int64.
Returns:
DataProto: torch.Tensor: the log_prob tensor
"""
data.batch = data.batch.contiguous()
def compute_logprobs_fn(output, data):
response = data['responses']
response_length = response.size(1)
logits = output['logits']
logits = logits[:, -response_length - 1:-1]
log_probs = vocab_parallel_log_probs_from_logits(logits, response)
return {'log_probs': log_probs}
# We make recompute_old_log_prob by default here.
# TODO (zhangchi.usc1992): actually, this function should only return log_prob and this logic should be handled by user outside
recompute_old_log_prob = self.config.get('recompute_old_log_prob', True)
if recompute_old_log_prob or 'old_log_probs' not in data.batch.keys():
select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids']
batch = data.select(batch_keys=select_keys).batch
input_ids = batch['input_ids']
batch_size = input_ids.size(0)
response = batch['responses']
response_length = response.size(1)
with torch.no_grad():
output = self.forward_backward_batch(data, forward_only=True, post_process_fn=compute_logprobs_fn)
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# only on last rank. It should be on every tp rank
log_probs = torch.cat([o['log_probs'] for o in output], dim=0) # (bs, seq_size)
log_probs = log_probs.to(torch.float32)
else:
log_probs = torch.empty(size=(batch_size, response_length),
dtype=torch.float32,
device=input_ids.device)
# broadcast across pp ranks
torch.distributed.broadcast(tensor=log_probs,
src=mpu.get_pipeline_model_parallel_last_rank(),
group=mpu.get_pipeline_model_parallel_group(),
async_op=False)
# add empty cache after each compute
torch.cuda.empty_cache()
return log_probs
def make_minibatch_iterator(self, data: DataProto) -> Iterable[DataProto]:
"""Make minibatch iterator for updating the actor
Args:
data (DataProto): a DataProto containing keys
``input_ids``: tensor of shape [batch_size, sequence_length]. torch.int64, where ``sequence_length = prompt_length + response_length``
``attention_mask``: tensor of shape [batch_size, sequence_length]. torch.int64
``position_ids``: tensor of shape [batch_size, sequence_length]. torch.int64
``responses``: tensor of shape [batch_size, response_length]. torch.int64. Note that responses = input_ids[:, -response_length:]
``old_log_probs``: tensor of shape [batch_size, response_length]. torch.float32. The log probability of responses.
``advantages``: tensor of shape [batch_size, response_length]. torch.float32. The advantages of responses.
See PPO paper for details. https://arxiv.org/abs/1707.06347
Returns:
"""
select_keys = ['responses', 'input_ids', 'attention_mask', 'position_ids', 'old_log_probs', 'advantages']
data = data.select(batch_keys=select_keys)
return data.make_iterator(mini_batch_size=self.config.ppo_mini_batch_size,
epochs=self.config.ppo_epochs,
dataloader_kwargs={'shuffle': self.config.shuffle})
def forward_backward_batch(self, data: DataProto, forward_only=False, post_process_fn=None):
"""
We assume:
- The model takes input: (input_ids, attention_mask, position_ids). No rmpad for the input
- The communication shape is (total_nnz_pad_to_sp // tp_size, 1, hidden_size) if sequence parallel is enabled
"""
# broadcast from last pp rank to all other pp ranks
# TODO: actually, we just need to control the sampling order.
broadcast_dict_tensor(data.batch,
src=mpu.get_pipeline_model_parallel_last_rank(),
group=mpu.get_pipeline_model_parallel_group())
# split into micro-batches
data.batch['attention_mask'] = data.batch['attention_mask'].to(bool)
if data.meta_info.get('micro_batch_size', None) is not None:
batch_size = data.meta_info['micro_batch_size']
else:
batch_size = self.config.ppo_micro_batch_size
batches = split_dict_tensor_into_batches(data.batch, batch_size=batch_size)
# compute input shapes for pp stages
input_shapes = compute_transformers_input_shapes(
batches,
meta_info={
'sequence_parallel': self.megatron_config.sequence_parallel,
'hidden_size': self.model_config.hidden_size
})
n_micro_batch = len(batches)
seq_len = batches[0]['input_ids'].shape[1]
forward_backward_func = get_forward_backward_func()
def loss_func(output, data, meta_info):
if forward_only:
if post_process_fn is None:
return 1.0, {'logits': output.logits}
else:
return 1.0, post_process_fn(output, data)
responses = data['responses']
response_length = responses.size(1)
attention_mask = data['attention_mask']
response_mask = attention_mask[:, -response_length:]
old_log_prob = data['old_log_probs']
advantages = data['advantages']
clip_ratio = meta_info['clip_ratio']
entropy_coeff = meta_info['entropy_coeff']
# compute policy loss
logits = output.logits
logits = logits[:, -response_length - 1:-1]
log_prob = vocab_parallel_log_probs_from_logits(logits, responses)
pg_loss, pg_clipfrac, ppo_kl = core_algos.compute_policy_loss(old_log_prob=old_log_prob,
log_prob=log_prob,
advantages=advantages,
eos_mask=response_mask,
cliprange=clip_ratio)
entropy_loss = vocab_parallel_compute_entropy_loss(logits, eos_mask=response_mask)
policy_loss = pg_loss - entropy_loss * entropy_coeff
# return loss and stats
stats = {
'actor/entropy_loss': entropy_loss.detach().item(),
'actor/pg_loss': pg_loss.detach().item(),
'actor/pg_clipfrac': pg_clipfrac.detach().item(),
'actor/ppo_kl': ppo_kl.detach().item()
}
return policy_loss, stats
def forward_step(batch_iter, model):
batch = next(batch_iter)
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
position_ids = batch['position_ids']
output = model(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids)
if forward_only:
meta_info = None
else:
meta_info = {'clip_ratio': self.config.clip_ratio, 'entropy_coeff': self.config.entropy_coeff}
return output, partial(loss_func, data=batch, meta_info=meta_info)
# batch should be a list of batches inside micro-batches
batch_generator = make_batch_generator(batches, vpp_size=len(self.actor_module))
# TODO: we may use the new schedule instead
# for flash-attn: (seq_len, batch_size, hidden_size) = (mbs*seq_len, 1, hidden_size)
if mpu.get_pipeline_model_parallel_world_size() > 1:
losses_reduced = forward_backward_func(
forward_step_func=forward_step,
data_iterator=batch_generator,
model=self.actor_module,
num_microbatches=n_micro_batch,
input_shapes=input_shapes, # must set for flash-attn sequence packing
seq_length=batch_size * seq_len, # no use when input_shapes was set
hidden_size=self.model_config.hidden_size, # no use when input_shapes was set
micro_batch_size=1, # no use when input_shapes was set
forward_only=forward_only,
)
else:
losses_reduced = forward_backward_func(
forward_step_func=forward_step,
data_iterator=batch_generator,
model=self.actor_module,
num_microbatches=n_micro_batch,
seq_length=batch_size * seq_len, # in use for pp = 1
hidden_size=self.model_config.hidden_size, # in use for pp = 1
micro_batch_size=1, # in use for pp = 1
forward_only=forward_only,
)
# loss_reduces contains the stats returned from loss_func
return losses_reduced
def update_policy(self, dataloader: Iterable[DataProto]) -> Dict:
"""Update the policy with an iterator of DataProto
Args:
dataloader (Iterable[DataProto]): an iterator over the DataProto that returns by ``make_minibatch_iterator``
The keys of each data batch is described in the make_minibatch_iterator.
Returns:
Dict: a dictionary containing the statistics. Note that the statistics are only valid in the last pp stage
and users have to combine the output in each dp rank manually.
"""
metrics = {}
for data in dataloader:
# data = data.batch.to(self.actor_module.device)
self.actor_optimizer.zero_grad()
# use use_contiguous_buffers_in_local_ddp and no overlap_dp_param_comm
for chunk in self.actor_module:
# if use distributed optimizer, zero grad buffer will be handled by optimizer
chunk.zero_grad_buffer(zero_buffer=(not self.actor_optimizer_config.use_distributed_optimizer))
metric_micro_batch = self.forward_backward_batch(data)
for metric in metric_micro_batch:
append_to_dict(metrics, metric) # append the metric from this micro-batch to global metrics.
update_successful, grad_norm, num_zeros_in_grad = self.actor_optimizer.step(
self.megatron_config, self.megatron_config.timers)
if update_successful:
# allgather already execute in optimizer.step in new megatron
pass
else:
raise NotImplementedError
for metric in metric_micro_batch:
append_to_dict(metrics, metric) # append the metric from this micro-batch to global metrics.
# add empty cache after each compute
torch.cuda.empty_cache()
return metrics