第一次合并clean代码
This commit is contained in:
273
clean/preprocess_mineru.py
Normal file
273
clean/preprocess_mineru.py
Normal file
@@ -0,0 +1,273 @@
|
||||
import re
|
||||
import os
|
||||
import json
|
||||
import copy
|
||||
import requests
|
||||
import time
|
||||
import sqlite3
|
||||
import PyPDF2
|
||||
import multiprocessing
|
||||
import mysql.connector
|
||||
|
||||
from loguru import logger
|
||||
from glob import glob
|
||||
from tqdm import tqdm
|
||||
|
||||
from magic_pdf.pipe.UNIPipe import UNIPipe
|
||||
from magic_pdf.pipe.OCRPipe import OCRPipe
|
||||
from magic_pdf.pipe.TXTPipe import TXTPipe
|
||||
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
|
||||
import magic_pdf.model as model_config
|
||||
|
||||
model_config.__use_inside_model__ = True
|
||||
|
||||
# 图床配置
|
||||
IMGBED_URL = "http://localhost:40027/"
|
||||
# 检查imgbed url是否以/结尾
|
||||
if not IMGBED_URL.endswith('/'):
|
||||
IMGBED_URL += '/'
|
||||
token_endpoint = f"{IMGBED_URL}api/v1/tokens"
|
||||
upload_endpoint = f"{IMGBED_URL}api/v1/upload"
|
||||
|
||||
# 通过如下方式获取token
|
||||
# curl -X POST http://localhost:40027/api/v1/tokens -H "Content-Type: application/json" -d '{"email":"yt.li2@siat.ac.cn", "password":"lyt20000414."}'
|
||||
IMGBED_TOKEN = "6|QsBh5H7txY3Hd7ju1nzYKOBSdFQeL0YberydSFIH"
|
||||
|
||||
def replace_image_links(md_content: str, images_urls: dict) -> str:
|
||||
# 匹配 Markdown 中的图像链接形式,即: 
|
||||
pattern = r'!\[(.*?)\]\((.*?)\)'
|
||||
|
||||
def replace_link(match):
|
||||
# 提取出当前匹配到的图片路径
|
||||
image_path = match.group(2)
|
||||
# 检查该路径是否在字典中
|
||||
if image_path in images_urls:
|
||||
# 从字典中获取新的 URL
|
||||
new_url = images_urls[image_path]
|
||||
return f""
|
||||
return match.group(0)
|
||||
|
||||
# 使用 sub 函数进行替换
|
||||
updated_md_content = re.sub(pattern, replace_link, md_content)
|
||||
return updated_md_content
|
||||
|
||||
# 上传图片到LSKY Pro
|
||||
def upload_image(img_dir):
|
||||
headers = {
|
||||
"Authorization": f"Bearer {IMGBED_TOKEN}",
|
||||
'Accept': 'application/json'
|
||||
}
|
||||
|
||||
image_urls = {}
|
||||
os.makedirs(img_dir, exist_ok=True)
|
||||
img_names = os.listdir(img_dir)
|
||||
for image_name in img_names:
|
||||
retry = 0
|
||||
image_path = os.path.join(img_dir, image_name)
|
||||
while retry < 5: # 最大重试次数
|
||||
try:
|
||||
with open(image_path, 'rb') as image_file: # 确保文件在上传时是打开状态
|
||||
files = {'file': image_file}
|
||||
|
||||
# 上传文件
|
||||
response = requests.post(upload_endpoint, headers=headers, files=files)
|
||||
if response.status_code == 200:
|
||||
result = response.json()
|
||||
if result['status']:
|
||||
image_url = result['data']['links']['url']
|
||||
image_urls['images/'+image_name] = image_url
|
||||
break # 上传成功,退出重试循环
|
||||
else:
|
||||
raise Exception(f"图片上传失败: {result['message']}")
|
||||
elif response.status_code == 429:
|
||||
# 429 响应,等待一段时间再重试
|
||||
wait_time = min(2 ** retry, 60) # 指数退避,最大等待 60 秒
|
||||
logger.warning(f"请求过于频繁,等待 {wait_time} 秒...")
|
||||
time.sleep(wait_time)
|
||||
else:
|
||||
raise Exception(f"HTTP请求出错: {response.status_code}")
|
||||
|
||||
retry += 1 # 增加重试次数
|
||||
time.sleep(1) # 在重试失败后稍等一下
|
||||
|
||||
except FileNotFoundError:
|
||||
logger.error(f"文件 {image_path} 不存在,请检查路径是否正确")
|
||||
return
|
||||
|
||||
return image_urls
|
||||
|
||||
def json_md_dump(
|
||||
pipe,
|
||||
md_writer,
|
||||
pdf_name,
|
||||
content_list,
|
||||
md_content,
|
||||
):
|
||||
# 写入模型结果到 model.json
|
||||
orig_model_list = copy.deepcopy(pipe.model_list)
|
||||
md_writer.write(
|
||||
content=json.dumps(orig_model_list, ensure_ascii=False, indent=4),
|
||||
path=f"{pdf_name}_model.json"
|
||||
)
|
||||
|
||||
# 写入中间结果到 middle.json
|
||||
md_writer.write(
|
||||
content=json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4),
|
||||
path=f"{pdf_name}_middle.json"
|
||||
)
|
||||
|
||||
# text文本结果写入到 conent_list.json
|
||||
md_writer.write(
|
||||
content=json.dumps(content_list, ensure_ascii=False, indent=4),
|
||||
path=f"{pdf_name}_content_list.json"
|
||||
)
|
||||
|
||||
# 写入结果到 .md 文件中
|
||||
md_writer.write(
|
||||
content=md_content,
|
||||
path=f"{pdf_name}.md"
|
||||
)
|
||||
|
||||
def pdf_parse_main(
|
||||
pdf_path: str,
|
||||
parse_method: str = 'auto',
|
||||
model_json_path: str = None,
|
||||
is_json_md_dump: bool = True,
|
||||
output_dir: str = None
|
||||
):
|
||||
"""
|
||||
执行从 pdf 转换到 json、md 的过程,输出 md 和 json 文件到 pdf 文件所在的目录
|
||||
|
||||
:param pdf_path: .pdf 文件的路径,可以是相对路径,也可以是绝对路径
|
||||
:param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr
|
||||
:param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应
|
||||
:param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中
|
||||
:param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果
|
||||
"""
|
||||
try:
|
||||
pdf_name = os.path.basename(pdf_path).split("/")[-1].replace(".pdf", "")
|
||||
pdf_path_parent = os.path.dirname(pdf_path)
|
||||
|
||||
if output_dir:
|
||||
output_path = os.path.join(output_dir, pdf_name)
|
||||
else:
|
||||
output_path = os.path.join(pdf_path_parent, pdf_name)
|
||||
|
||||
output_image_path = os.path.join(output_path, 'images')
|
||||
|
||||
# 获取图片的父路径,为的是以相对路径保存到 .md 和 conent_list.json 文件中
|
||||
image_path_parent = os.path.basename(output_image_path)
|
||||
|
||||
pdf_bytes = open(pdf_path, "rb").read() # 读取 pdf 文件的二进制数据
|
||||
|
||||
if model_json_path:
|
||||
# 读取已经被模型解析后的pdf文件的 json 原始数据,list 类型
|
||||
model_json = json.loads(open(model_json_path, "r", encoding="utf-8").read())
|
||||
else:
|
||||
model_json = []
|
||||
|
||||
# 执行解析步骤
|
||||
# image_writer = DiskReaderWriter(output_image_path)
|
||||
image_writer, md_writer = DiskReaderWriter(output_image_path), DiskReaderWriter(output_path)
|
||||
|
||||
# 选择解析方式
|
||||
# jso_useful_key = {"_pdf_type": "", "model_list": model_json}
|
||||
# pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
|
||||
if parse_method == "auto":
|
||||
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
|
||||
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
|
||||
elif parse_method == "txt":
|
||||
pipe = TXTPipe(pdf_bytes, model_json, image_writer)
|
||||
elif parse_method == "ocr":
|
||||
pipe = OCRPipe(pdf_bytes, model_json, image_writer)
|
||||
else:
|
||||
logger.error("unknown parse method, only auto, ocr, txt allowed")
|
||||
exit(1)
|
||||
|
||||
# 执行分类
|
||||
pipe.pipe_classify()
|
||||
|
||||
# 如果没有传入模型数据,则使用内置模型解析
|
||||
if not model_json:
|
||||
if model_config.__use_inside_model__:
|
||||
pipe.pipe_analyze() # 解析
|
||||
else:
|
||||
logger.error("need model list input")
|
||||
exit(1)
|
||||
|
||||
# 执行解析
|
||||
pipe.pipe_parse()
|
||||
|
||||
# 保存 text 和 md 格式的结果
|
||||
content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode="none")
|
||||
md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode="none")
|
||||
# 上传图像到图床
|
||||
image_urls = upload_image(output_image_path)
|
||||
md_content = replace_image_links(md_content, image_urls)
|
||||
|
||||
if is_json_md_dump:
|
||||
json_md_dump(pipe, md_writer, pdf_name, content_list, md_content)
|
||||
return 'sucess'
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
return 'error'
|
||||
|
||||
def init_worker(devices, pdfs, gpu_index):
|
||||
"""
|
||||
Initialize a worker process to process a chunk of PDFs with a specific GPU.
|
||||
"""
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_index)
|
||||
process_pdf_chunk(pdfs, gpu_index)
|
||||
|
||||
def process_pdf_chunk(pdf_paths, worker_id):
|
||||
for pdf_path in tqdm(pdf_paths, desc=f"Worker {worker_id} Progress"):
|
||||
try:
|
||||
with open(pdf_path, 'rb') as file:
|
||||
pdf_reader = PyPDF2.PdfReader(file)
|
||||
print(os.path.basename(pdf_path).replace(".pdf", "").replace('_', '/'))
|
||||
status = pdf_parse_main(pdf_path, parse_method='auto', output_dir=output_dir)
|
||||
except PyPDF2.errors.PdfReadError:
|
||||
logger.error(f"{pdf_path} has been broken")
|
||||
except Exception as e:
|
||||
logger.error(f"{pdf_path} has an error: {e}")
|
||||
|
||||
def multiprocessing_setup(pdf_paths, num_gpus):
|
||||
num_processes_per_gpu = 2
|
||||
chunk_size = len(pdf_paths) // (num_gpus * num_processes_per_gpu)
|
||||
processes = []
|
||||
|
||||
# Create processes for each GPU
|
||||
for gpu_id in range(num_gpus):
|
||||
for process_id in range(num_processes_per_gpu):
|
||||
start_idx = (gpu_id * num_processes_per_gpu + process_id) * chunk_size
|
||||
end_idx = None if (gpu_id == num_gpus - 1 and process_id == num_processes_per_gpu - 1) else start_idx + chunk_size
|
||||
chunk = pdf_paths[start_idx:end_idx]
|
||||
|
||||
p = multiprocessing.Process(target=init_worker, args=([gpu_id], chunk, gpu_id))
|
||||
processes.append(p)
|
||||
p.start()
|
||||
|
||||
# Ensure all processes have completed
|
||||
for p in processes:
|
||||
p.join()
|
||||
|
||||
if __name__ == "__main__":
|
||||
_cur_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
# 此处更改路径
|
||||
pdf_dir = os.path.join(_cur_dir, "black_phosphorus_wulie/黑磷文献/黑磷文献-任务1-推荐官能团")
|
||||
output_dir = os.path.join(_cur_dir, "black_phosphorus_wulie/黑磷文献-任务1-推荐官能团_pdf2md")
|
||||
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
pdf_paths = sorted(glob(os.path.join(pdf_dir, "*.pdf")))
|
||||
|
||||
print("pdf数量:", len(pdf_paths))
|
||||
|
||||
# Number of GPUs
|
||||
num_gpus = 8
|
||||
|
||||
# Setup multiprocessing to handle PDFs across multiple GPUs
|
||||
# multiprocessing_setup(pdf_paths, num_gpus)
|
||||
|
||||
pdf_path = "/home/ubuntu/sas0/LYT/paper_dataset/black_phosphorus_wulie/黑磷文献/黑磷文献-任务1-推荐官能团/(P-O,P-O-P)Supporting_information.pdf"
|
||||
pdf_parse_main(pdf_path, parse_method='auto', output_dir=output_dir)
|
||||
Reference in New Issue
Block a user